Cargando…
The Level of Residual Dispersion Variation and the Power of Differential Expression Tests for RNA-Seq Data
RNA-Sequencing (RNA-Seq) has been widely adopted for quantifying gene expression changes in comparative transcriptome analysis. For detecting differentially expressed genes, a variety of statistical methods based on the negative binomial (NB) distribution have been proposed. These methods differ in...
Autores principales: | Mi, Gu, Di, Yanming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388866/ https://www.ncbi.nlm.nih.gov/pubmed/25849826 http://dx.doi.org/10.1371/journal.pone.0120117 |
Ejemplares similares
-
A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data
por: Wu, Hao, et al.
Publicado: (2013) -
Power analysis for RNA-Seq differential expression studies
por: Yu, Lianbo, et al.
Publicado: (2017) -
Identifying differentially expressed transcripts from RNA-seq data with biological variation
por: Glaus, Peter, et al.
Publicado: (2012) -
Gene dispersion is the key determinant of the read count bias in differential expression analysis of RNA-seq data
por: Yoon, Sora, et al.
Publicado: (2017) -
Identifying stably expressed genes from multiple RNA-Seq data sets
por: Zhuo, Bin, et al.
Publicado: (2016)