Cargando…

Age-Related Onset of Obesity Corresponds with Metabolic Dysregulation and Altered Microglia Morphology in Mice Deficient for Ifitm Proteins

The IfitmDel mouse lacks all five of the Ifitm genes via LoxP deletion. This animal breeds normally with no obvious defect in development. The IfitmDel animals exhibit a steady and significantly enhanced weight gain relative to wild-type controls beginning about three months of age and under normal...

Descripción completa

Detalles Bibliográficos
Autores principales: Wee, Yin Shen, Weis, Janis J., Gahring, Lorise C., Rogers, Scott W., Weis, John H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391874/
https://www.ncbi.nlm.nih.gov/pubmed/25856311
http://dx.doi.org/10.1371/journal.pone.0123218
_version_ 1782365887321341952
author Wee, Yin Shen
Weis, Janis J.
Gahring, Lorise C.
Rogers, Scott W.
Weis, John H.
author_facet Wee, Yin Shen
Weis, Janis J.
Gahring, Lorise C.
Rogers, Scott W.
Weis, John H.
author_sort Wee, Yin Shen
collection PubMed
description The IfitmDel mouse lacks all five of the Ifitm genes via LoxP deletion. This animal breeds normally with no obvious defect in development. The IfitmDel animals exhibit a steady and significantly enhanced weight gain relative to wild-type controls beginning about three months of age and under normal feeding conditions. The increased weight corresponds with elevated fat mass, and in tolerance tests they are hyporesponsive to insulin but respond normally to glucose. Both young (4 mo) and older (12 mo) IfitmDel mice have enhanced levels of serum leptin suggesting a defect in leptin/leptin receptor signaling. Analysis of the gene expression profiles in the hypothalamus of IfitmDel animals, compared to WT, demonstrated an altered ratio of Pomc and Npy neuropeptide expression, which likely impairs the satiation response of the IfitmDel animal leading to an increased eating behavior. Also elevated in hypothalamus of IfitmDel mice were pro-inflammatory cytokine expression and reduced IL-10. Anatomical analysis of the hypothalamus using immunohistochemistry revealed that microglia exhibit an abnormal morphology in IfitmDel animals and respond abnormally to Poly:IC challenge. These abnormalities extend the phenotype of the IfitmDel mouse beyond abnormal responses to viral challenge to include a metabolic phenotype and weight gain. Further, this novel phenotype for the IfitmDel mouse could be related to abnormal neuropeptide production, inflammatory status and microglia status in the hypothalamus.
format Online
Article
Text
id pubmed-4391874
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-43918742015-04-21 Age-Related Onset of Obesity Corresponds with Metabolic Dysregulation and Altered Microglia Morphology in Mice Deficient for Ifitm Proteins Wee, Yin Shen Weis, Janis J. Gahring, Lorise C. Rogers, Scott W. Weis, John H. PLoS One Research Article The IfitmDel mouse lacks all five of the Ifitm genes via LoxP deletion. This animal breeds normally with no obvious defect in development. The IfitmDel animals exhibit a steady and significantly enhanced weight gain relative to wild-type controls beginning about three months of age and under normal feeding conditions. The increased weight corresponds with elevated fat mass, and in tolerance tests they are hyporesponsive to insulin but respond normally to glucose. Both young (4 mo) and older (12 mo) IfitmDel mice have enhanced levels of serum leptin suggesting a defect in leptin/leptin receptor signaling. Analysis of the gene expression profiles in the hypothalamus of IfitmDel animals, compared to WT, demonstrated an altered ratio of Pomc and Npy neuropeptide expression, which likely impairs the satiation response of the IfitmDel animal leading to an increased eating behavior. Also elevated in hypothalamus of IfitmDel mice were pro-inflammatory cytokine expression and reduced IL-10. Anatomical analysis of the hypothalamus using immunohistochemistry revealed that microglia exhibit an abnormal morphology in IfitmDel animals and respond abnormally to Poly:IC challenge. These abnormalities extend the phenotype of the IfitmDel mouse beyond abnormal responses to viral challenge to include a metabolic phenotype and weight gain. Further, this novel phenotype for the IfitmDel mouse could be related to abnormal neuropeptide production, inflammatory status and microglia status in the hypothalamus. Public Library of Science 2015-04-09 /pmc/articles/PMC4391874/ /pubmed/25856311 http://dx.doi.org/10.1371/journal.pone.0123218 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
spellingShingle Research Article
Wee, Yin Shen
Weis, Janis J.
Gahring, Lorise C.
Rogers, Scott W.
Weis, John H.
Age-Related Onset of Obesity Corresponds with Metabolic Dysregulation and Altered Microglia Morphology in Mice Deficient for Ifitm Proteins
title Age-Related Onset of Obesity Corresponds with Metabolic Dysregulation and Altered Microglia Morphology in Mice Deficient for Ifitm Proteins
title_full Age-Related Onset of Obesity Corresponds with Metabolic Dysregulation and Altered Microglia Morphology in Mice Deficient for Ifitm Proteins
title_fullStr Age-Related Onset of Obesity Corresponds with Metabolic Dysregulation and Altered Microglia Morphology in Mice Deficient for Ifitm Proteins
title_full_unstemmed Age-Related Onset of Obesity Corresponds with Metabolic Dysregulation and Altered Microglia Morphology in Mice Deficient for Ifitm Proteins
title_short Age-Related Onset of Obesity Corresponds with Metabolic Dysregulation and Altered Microglia Morphology in Mice Deficient for Ifitm Proteins
title_sort age-related onset of obesity corresponds with metabolic dysregulation and altered microglia morphology in mice deficient for ifitm proteins
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391874/
https://www.ncbi.nlm.nih.gov/pubmed/25856311
http://dx.doi.org/10.1371/journal.pone.0123218
work_keys_str_mv AT weeyinshen agerelatedonsetofobesitycorrespondswithmetabolicdysregulationandalteredmicrogliamorphologyinmicedeficientforifitmproteins
AT weisjanisj agerelatedonsetofobesitycorrespondswithmetabolicdysregulationandalteredmicrogliamorphologyinmicedeficientforifitmproteins
AT gahringlorisec agerelatedonsetofobesitycorrespondswithmetabolicdysregulationandalteredmicrogliamorphologyinmicedeficientforifitmproteins
AT rogersscottw agerelatedonsetofobesitycorrespondswithmetabolicdysregulationandalteredmicrogliamorphologyinmicedeficientforifitmproteins
AT weisjohnh agerelatedonsetofobesitycorrespondswithmetabolicdysregulationandalteredmicrogliamorphologyinmicedeficientforifitmproteins