Cargando…
Recognition Method of Limb Motor Imagery EEG Signals Based on Integrated Back-propagation Neural Network
In this paper, in order to solve the existing problems of the low recognition rate and poor real-time performance in limb motor imagery, the integrated back-propagation neural network (IBPNN) was applied to the pattern recognition research of motor imagery EEG signals (imagining left-hand movement,...
Autores principales: | Li, Mingyang, Chen, Wanzhong, Cui, Bingyi, Tian, Yantao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Open
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397826/ https://www.ncbi.nlm.nih.gov/pubmed/25893019 http://dx.doi.org/10.2174/1874120701509010083 |
Ejemplares similares
-
Motor Imagery EEG Signal Recognition Using Deep Convolution Neural Network
por: Xiao, Xiongliang, et al.
Publicado: (2021) -
Recognition of single upper limb motor imagery tasks from EEG using multi-branch fusion convolutional neural network
por: Zhang, Rui, et al.
Publicado: (2023) -
Deep temporal networks for EEG-based motor imagery recognition
por: Sharma, Neha, et al.
Publicado: (2023) -
Dynamic pruning group equivariant network for motor imagery EEG recognition
por: Tang, Xianlun, et al.
Publicado: (2023) -
EEG oscillatory patterns and classification of sequential compound limb motor imagery
por: Yi, Weibo, et al.
Publicado: (2016)