Cargando…

Caspase-2 is required for dendritic spine and behavioral alterations in J20 APP transgenic mice

Caspases play critical roles in Alzheimer’s disease (AD) pathogenesis. Here we show that caspase-2 is required for the cognitive decline seen in hAPP transgenic mice (J20). The age-related changes in behavior and dendritic spine density observed in these mice are absent when they lack caspase-2, in...

Descripción completa

Detalles Bibliográficos
Autores principales: Pozueta, Julio, Lefort, Roger, Ribe, Elena M., Troy, Carol M., Aran-cio, Ottavio, Shelanski, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398315/
https://www.ncbi.nlm.nih.gov/pubmed/23748737
http://dx.doi.org/10.1038/ncomms2927
Descripción
Sumario:Caspases play critical roles in Alzheimer’s disease (AD) pathogenesis. Here we show that caspase-2 is required for the cognitive decline seen in hAPP transgenic mice (J20). The age-related changes in behavior and dendritic spine density observed in these mice are absent when they lack caspase-2, in spite of similar levels of Aβ deposition and inflammation. A similar degree of protection is observed in cultured hippocampal neurons lacking caspase-2, which are immune to the synaptotoxic effects of Aβ. Our studies suggest that caspase-2 is a critical mediator in the activation of the RhoA/ROCK-II signaling pathway, leading to the collapse of dendritic spines. We propose that this is controlled by an inactive caspase-2/RhoA/ROCK-II complex localized in dendrites, which dissociates in the presence of Aβ, allowing for their activation and entry in the spine. These findings directly implicate caspase-2 as key driver of synaptic dysfunction in AD and offer novel therapeutic targets.