Cargando…
Role of the splicing factor SRSF4 in cisplatin-induced modifications of pre-mRNA splicing and apoptosis
BACKGROUND: Modification of splicing by chemotherapeutic drugs has usually been evaluated on a limited number of pre-mRNAs selected for their recognized or potential importance in cell proliferation or apoptosis. However, the pathways linking splicing alterations to the efficiency of cancer therapy...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4399393/ https://www.ncbi.nlm.nih.gov/pubmed/25884497 http://dx.doi.org/10.1186/s12885-015-1259-0 |
Sumario: | BACKGROUND: Modification of splicing by chemotherapeutic drugs has usually been evaluated on a limited number of pre-mRNAs selected for their recognized or potential importance in cell proliferation or apoptosis. However, the pathways linking splicing alterations to the efficiency of cancer therapy remain unclear. METHODS: Next-generation sequencing was used to analyse the transcriptome of breast carcinoma cells treated by cisplatin. Pharmacological inhibitors, RNA interference, cells deficient in specific signalling pathways, RT-PCR and FACS analysis were used to investigate how the anti-cancer drug cisplatin affected alternative splicing and the cell death pathway. RESULTS: We identified 717 splicing events affected by cisplatin, including 245 events involving cassette exons. Gene ontology analysis indicates that cell cycle, mRNA processing and pre-mRNA splicing were the main pathways affected. Importantly, the cisplatin–induced splicing alterations required class I PI3Ks P110β but not components such as ATM, ATR and p53 that are involved in the DNA damage response. The siRNA-mediated depletion of the splicing regulator SRSF4, but not SRSF6, expression abrogated many of the splicing alterations as well as cell death induced by cisplatin. CONCLUSION: Many of the splicing alterations induced by cisplatin are caused by SRSF4 and they contribute to apoptosis in a process requires class I PI3K. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-015-1259-0) contains supplementary material, which is available to authorized users. |
---|