Cargando…

The Single Nucleotide Polymorphism Gly482Ser in the PGC-1α Gene Impairs Exercise-Induced Slow-Twitch Muscle Fibre Transformation in Humans

PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP) in the PGC-1α gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Steinbacher, Peter, Feichtinger, René G., Kedenko, Lyudmyla, Kedenko, Igor, Reinhardt, Sandra, Schönauer, Anna-Lena, Leitner, Isabella, Sänger, Alexandra M., Stoiber, Walter, Kofler, Barbara, Förster, Holger, Paulweber, Bernhard, Ring-Dimitriou, Susanne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401702/
https://www.ncbi.nlm.nih.gov/pubmed/25886402
http://dx.doi.org/10.1371/journal.pone.0123881
_version_ 1782367176807677952
author Steinbacher, Peter
Feichtinger, René G.
Kedenko, Lyudmyla
Kedenko, Igor
Reinhardt, Sandra
Schönauer, Anna-Lena
Leitner, Isabella
Sänger, Alexandra M.
Stoiber, Walter
Kofler, Barbara
Förster, Holger
Paulweber, Bernhard
Ring-Dimitriou, Susanne
author_facet Steinbacher, Peter
Feichtinger, René G.
Kedenko, Lyudmyla
Kedenko, Igor
Reinhardt, Sandra
Schönauer, Anna-Lena
Leitner, Isabella
Sänger, Alexandra M.
Stoiber, Walter
Kofler, Barbara
Förster, Holger
Paulweber, Bernhard
Ring-Dimitriou, Susanne
author_sort Steinbacher, Peter
collection PubMed
description PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP) in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2). Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO(2peak)). Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation.
format Online
Article
Text
id pubmed-4401702
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-44017022015-04-21 The Single Nucleotide Polymorphism Gly482Ser in the PGC-1α Gene Impairs Exercise-Induced Slow-Twitch Muscle Fibre Transformation in Humans Steinbacher, Peter Feichtinger, René G. Kedenko, Lyudmyla Kedenko, Igor Reinhardt, Sandra Schönauer, Anna-Lena Leitner, Isabella Sänger, Alexandra M. Stoiber, Walter Kofler, Barbara Förster, Holger Paulweber, Bernhard Ring-Dimitriou, Susanne PLoS One Research Article PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP) in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2). Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO(2peak)). Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation. Public Library of Science 2015-04-17 /pmc/articles/PMC4401702/ /pubmed/25886402 http://dx.doi.org/10.1371/journal.pone.0123881 Text en © 2015 Steinbacher et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Steinbacher, Peter
Feichtinger, René G.
Kedenko, Lyudmyla
Kedenko, Igor
Reinhardt, Sandra
Schönauer, Anna-Lena
Leitner, Isabella
Sänger, Alexandra M.
Stoiber, Walter
Kofler, Barbara
Förster, Holger
Paulweber, Bernhard
Ring-Dimitriou, Susanne
The Single Nucleotide Polymorphism Gly482Ser in the PGC-1α Gene Impairs Exercise-Induced Slow-Twitch Muscle Fibre Transformation in Humans
title The Single Nucleotide Polymorphism Gly482Ser in the PGC-1α Gene Impairs Exercise-Induced Slow-Twitch Muscle Fibre Transformation in Humans
title_full The Single Nucleotide Polymorphism Gly482Ser in the PGC-1α Gene Impairs Exercise-Induced Slow-Twitch Muscle Fibre Transformation in Humans
title_fullStr The Single Nucleotide Polymorphism Gly482Ser in the PGC-1α Gene Impairs Exercise-Induced Slow-Twitch Muscle Fibre Transformation in Humans
title_full_unstemmed The Single Nucleotide Polymorphism Gly482Ser in the PGC-1α Gene Impairs Exercise-Induced Slow-Twitch Muscle Fibre Transformation in Humans
title_short The Single Nucleotide Polymorphism Gly482Ser in the PGC-1α Gene Impairs Exercise-Induced Slow-Twitch Muscle Fibre Transformation in Humans
title_sort single nucleotide polymorphism gly482ser in the pgc-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401702/
https://www.ncbi.nlm.nih.gov/pubmed/25886402
http://dx.doi.org/10.1371/journal.pone.0123881
work_keys_str_mv AT steinbacherpeter thesinglenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT feichtingerreneg thesinglenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT kedenkolyudmyla thesinglenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT kedenkoigor thesinglenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT reinhardtsandra thesinglenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT schonauerannalena thesinglenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT leitnerisabella thesinglenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT sangeralexandram thesinglenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT stoiberwalter thesinglenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT koflerbarbara thesinglenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT forsterholger thesinglenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT paulweberbernhard thesinglenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT ringdimitrioususanne thesinglenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT steinbacherpeter singlenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT feichtingerreneg singlenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT kedenkolyudmyla singlenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT kedenkoigor singlenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT reinhardtsandra singlenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT schonauerannalena singlenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT leitnerisabella singlenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT sangeralexandram singlenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT stoiberwalter singlenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT koflerbarbara singlenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT forsterholger singlenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT paulweberbernhard singlenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans
AT ringdimitrioususanne singlenucleotidepolymorphismgly482serinthepgc1ageneimpairsexerciseinducedslowtwitchmusclefibretransformationinhumans