Cargando…

Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality

Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6–8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table1). Many mechanisms of resi...

Descripción completa

Detalles Bibliográficos
Autores principales: McIntyre, Alan, Harris, Adrian L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403040/
https://www.ncbi.nlm.nih.gov/pubmed/25700172
http://dx.doi.org/10.15252/emmm.201404271
_version_ 1782367305085222912
author McIntyre, Alan
Harris, Adrian L
author_facet McIntyre, Alan
Harris, Adrian L
author_sort McIntyre, Alan
collection PubMed
description Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6–8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy.
format Online
Article
Text
id pubmed-4403040
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BlackWell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-44030402015-04-23 Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality McIntyre, Alan Harris, Adrian L EMBO Mol Med Review Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6–8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy. BlackWell Publishing Ltd 2015-04 2015-02-19 /pmc/articles/PMC4403040/ /pubmed/25700172 http://dx.doi.org/10.15252/emmm.201404271 Text en © 2015 The Authors. Published under the terms of the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0/ This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review
McIntyre, Alan
Harris, Adrian L
Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality
title Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality
title_full Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality
title_fullStr Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality
title_full_unstemmed Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality
title_short Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality
title_sort metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403040/
https://www.ncbi.nlm.nih.gov/pubmed/25700172
http://dx.doi.org/10.15252/emmm.201404271
work_keys_str_mv AT mcintyrealan metabolicandhypoxicadaptationtoantiangiogenictherapyatargetforinducedessentiality
AT harrisadrianl metabolicandhypoxicadaptationtoantiangiogenictherapyatargetforinducedessentiality