Cargando…

PKA Enhances the Acute Insulin Response Leading to the Restoration of Glucose Control

Diabetes arises from insufficient insulin secretion and failure of the β-cell mass to persist and expand. These deficits can be treated with ligands to Gs-coupled G-protein-coupled receptors that raise β-cell cAMP. Here we studied the therapeutic potential of β-cell cAMP-dependent protein kinase (PK...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaihara, Kelly A., Dickson, Lorna M., Ellenbroek, Johanne H., Orr, Caitlin M.D., Layden, Brian T., Wicksteed, Barton
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407848/
https://www.ncbi.nlm.nih.gov/pubmed/25475437
http://dx.doi.org/10.2337/db14-1051
Descripción
Sumario:Diabetes arises from insufficient insulin secretion and failure of the β-cell mass to persist and expand. These deficits can be treated with ligands to Gs-coupled G-protein-coupled receptors that raise β-cell cAMP. Here we studied the therapeutic potential of β-cell cAMP-dependent protein kinase (PKA) activity in restoring glucose control using β-caPKA mice. PKA activity enhanced the acute insulin response (AIR) to glucose, which is a primary determinant of the efficacy of glucose clearance. Enhanced AIR improved peripheral insulin action, leading to more rapid muscle glucose uptake. In the setting of pre-established glucose intolerance caused by diet-induced insulin resistance or streptozotocin-mediated β-cell mass depletion, PKA activation enhanced β-cell secretory function to restore glucose control, primarily through augmentation of the AIR. Enhanced AIR and improved glucose control were maintained through 16 weeks of a high-fat diet and aging to 1 year. Importantly, improved glucose tolerance did not increase the risk for hypoglycemia, nor did it rely upon hyperinsulinemia or β-cell hyperplasia, although PKA activity was protective for β-cell mass. These data highlight that improving β-cell function through the activation of PKA has a large and underappreciated capacity to restore glucose control with minimal risk for adverse side effects.