Cargando…
Flow-dependent regulation of genome-wide mRNA and microRNA expression in endothelial cells in vivo
Atherosclerosis preferentially occurs in arterial regions exposed to disturbed blood flow (d-flow), in part, due to alterations in gene expression in the endothelium. While numerous in vitro studies have shown how anti-atherogenic flow and pro-atherogenic flow differently regulate gene expression of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411008/ https://www.ncbi.nlm.nih.gov/pubmed/25977794 http://dx.doi.org/10.1038/sdata.2014.39 |
Sumario: | Atherosclerosis preferentially occurs in arterial regions exposed to disturbed blood flow (d-flow), in part, due to alterations in gene expression in the endothelium. While numerous in vitro studies have shown how anti-atherogenic flow and pro-atherogenic flow differently regulate gene expression of cultured endothelial cells, similar in vivo studies have been scarce. Recently, we developed a mouse model of atherosclerosis that rapidly develops robust atherosclerosis by partially ligating the left carotid artery (LCA) branches, while using the contralateral right carotid (RCA) as control. We also developed a novel method to collect endothelial-enriched RNAs from the carotids of these animals, which enabled us to perform genome-wide expression analyses of mRNAs and miRNAs in the arterial endothelium exposed to either d-flow or s-flow. These microarray results were used to identify novel mechanosensitive genes such as DNA methyltransferase-1 and miR-712 that play key roles in atherosclerosis. Here, we report these endothelial mRNA and miRNA expression profiles with in-depth information on experimental procedures along with an example of usage of these data. |
---|