Cargando…

Anticonvulsant effects of mefloquine on generalized tonic-clonic seizures induced by two acute models in rats

BACKGROUND: Mefloquine can cross the blood–brain barrier and block the gap junction intercellular communication in the brain. Enhanced electrical coupling mediated by gap junctions is an underlying mechanism involved in the generation and maintenance of seizures. For this reason, the aim of this stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Franco-Pérez, Javier, Ballesteros-Zebadúa, Paola, Manjarrez-Marmolejo, Joaquín
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411716/
https://www.ncbi.nlm.nih.gov/pubmed/25886955
http://dx.doi.org/10.1186/s12868-015-0145-7
Descripción
Sumario:BACKGROUND: Mefloquine can cross the blood–brain barrier and block the gap junction intercellular communication in the brain. Enhanced electrical coupling mediated by gap junctions is an underlying mechanism involved in the generation and maintenance of seizures. For this reason, the aim of this study was to analyze the effects of the systemic administration of mefloquine on tonic-clonic seizures induced by two acute models such as pentylenetetrazole and maximal electroshock. RESULTS: All the control rats presented generalized tonic-clonic seizures after the administration of pentylenetetrazole. However, the incidence of seizures induced by pentylenetetrazole significantly decreased in the groups administered systematically with 40 and 80 mg/kg of mefloquine. In the control group, none of the rats survived after the generalized tonic-clonic seizures induced by pentylenetetrazole, but survival was improved by mefloquine. Besides, mefloquine significantly modified the total spectral power as well as the duration, amplitude and frequency of the epileptiform activity induced by pentylenetetrazole. For the maximal electroshock model, mefloquine did not change the occurrence of tonic hindlimb extension. However, this gap junction blocker significantly decreased the duration of the tonic hindlimb extension induced by the acute electroshock. CONCLUSIONS: These data suggest that mefloquine at low doses might be eliciting some anticonvulsant effects when is systemically administered to rats.