Cargando…
Feature Selection Combined with Neural Network Structure Optimization for HIV-1 Protease Cleavage Site Prediction
It is crucial to understand the specificity of HIV-1 protease for designing HIV-1 protease inhibitors. In this paper, a new feature selection method combined with neural network structure optimization is proposed to analyze the specificity of HIV-1 protease and find the important positions in an oct...
Autores principales: | Liu, Hui, Shi, Xiaomiao, Guo, Dongmei, Zhao, Zuowei, Yimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413510/ https://www.ncbi.nlm.nih.gov/pubmed/25961009 http://dx.doi.org/10.1155/2015/263586 |
Ejemplares similares
-
Prediction of HIV-1 protease cleavage site using a combination of sequence, structural, and physicochemical features
por: Singh, Onkar, et al.
Publicado: (2016) -
A Consistency-Based Feature Selection Method Allied with Linear SVMs for HIV-1 Protease Cleavage Site Prediction
por: Öztürk, Orkun, et al.
Publicado: (2013) -
A novel HIV vaccine targeting the protease cleavage sites
por: Li, Hongzhao, et al.
Publicado: (2017) -
A novel HIV vaccine targets the 12 protease cleavage sites
por: Luo, M, et al.
Publicado: (2012) -
Predicting HIV-1 Protease Cleavage Sites With Positive-Unlabeled Learning
por: Li, Zhenfeng, et al.
Publicado: (2021)