Cargando…
Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features
BACKGROUND: Protein-ligand binding site prediction from a 3D protein structure plays a pivotal role in rational drug design and can be helpful in drug side-effects prediction or elucidation of protein function. Embedded within the binding site detection problem is the problem of pocket ranking – how...
Autores principales: | Krivák, Radoslav, Hoksza, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414931/ https://www.ncbi.nlm.nih.gov/pubmed/25932051 http://dx.doi.org/10.1186/s13321-015-0059-5 |
Ejemplares similares
-
P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure
por: Krivák, Radoslav, et al.
Publicado: (2018) -
PrankWeb: a web server for ligand binding site prediction and visualization
por: Jendele, Lukas, et al.
Publicado: (2019) -
PrankWeb 3: accelerated ligand-binding site predictions for experimental and modelled protein structures
por: Jakubec, David, et al.
Publicado: (2022) -
AHoJ: rapid, tailored search and retrieval of apo and holo protein structures for user-defined ligands
por: Feidakis, Christos P, et al.
Publicado: (2022) -
PocketPicker: analysis of ligand binding-sites with shape descriptors
por: Weisel, Martin, et al.
Publicado: (2007)