Cargando…
A structure-based Multiple-Instance Learning approach to predicting in vitro transcription factor-DNA interaction
BACKGROUND: Understanding the mechanism of transcriptional regulation remains an inspiring stage of molecular biology. Recently, in vitro protein-binding microarray experiments have greatly improved the understanding of transcription factor-DNA interaction. We present a method - MIL3D - which predic...
Autores principales: | Gao, Zhen, Ruan, Jianhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416172/ https://www.ncbi.nlm.nih.gov/pubmed/25917392 http://dx.doi.org/10.1186/1471-2164-16-S4-S3 |
Ejemplares similares
-
Drug activity prediction using multiple-instance learning via joint instance and feature selection
por: Zhao, Zhendong, et al.
Publicado: (2013) -
Implementation of multiple-instance learning in drug activity prediction
por: Fu, Gang, et al.
Publicado: (2012) -
BERTMHC: improved MHC–peptide class II interaction prediction with transformer and multiple instance learning
por: Cheng, Jun, et al.
Publicado: (2021) -
Multiple instance learning of Calmodulin binding sites
por: Minhas, Fayyaz ul Amir Afsar, et al.
Publicado: (2012) -
Modeling in-vivo protein-DNA binding by combining multiple-instance learning with a hybrid deep neural network
por: Zhang, Qinhu, et al.
Publicado: (2019)