Cargando…

Glucose 6-phosphate dehydrogenase knockdown enhances IL-8 expression in HepG2 cells via oxidative stress and NF-κB signaling pathway

BACKGROUND: This study was designed to investigate the effect of glucose 6-phosphate dehydrogenase (G6PD) deficiency on pro-inflammatory cytokine secretion using a palmitate-induced inflammation HepG2 in vitro model. The modulation of cellular pro-inflammatory cytokine expression under G6PD deficien...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Hung-Chi, Cheng, Mei-Ling, Hua, Yi-Syuan, Wu, Yi-Hsuan, Lin, Hsin-Ru, Liu, Hui-Ya, Ho, Hung-Yao, Chiu, Daniel Tsun-Yee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419400/
https://www.ncbi.nlm.nih.gov/pubmed/25945076
http://dx.doi.org/10.1186/s12950-015-0078-z
Descripción
Sumario:BACKGROUND: This study was designed to investigate the effect of glucose 6-phosphate dehydrogenase (G6PD) deficiency on pro-inflammatory cytokine secretion using a palmitate-induced inflammation HepG2 in vitro model. The modulation of cellular pro-inflammatory cytokine expression under G6PD deficiency during chronic hepatic inflammation has never been investigated before. METHODS: The culture medium of untreated and palmitate-treated G6PD-scramble (Sc) and G6PD-knockdown (Gi) HepG2 cells were subjected to cytokine array analysis, followed by validation with ELISA and qRT-PCR of the target cytokine. The mechanism of altered cytokine secretion in palmitate-treated Sc and Gi HepG2 cells was examined in the presence of anti-oxidative enzyme (glutathione peroxidase, GPX), anti-inflammatory agent (curcumin), NF-κB inhibitor (BAY11-7085) and specific SiRNA against NF-κB subunit p65. RESULTS: Cytokine array analysis indicated that IL-8 is most significantly increased in G6PD-knockdown HepG2 cells. The up-regulation of IL-8 caused by G6PD deficiency in HepG2 cells was confirmed in other G6PD-deficient cells by qRT-PCR. The partial reduction of G6PD deficiency-derived IL-8 due to GPX and NF-κB blockers indicated that G6PD deficiency up-regulates pro-inflammatory cytokine IL-8 through oxidative stress and NF-κB pathway. CONCLUSIONS: G6PD deficiency predisposes cells to enhanced production of pro-inflammatory cytokine IL-8. Mechanistically, G6PD deficiency up-regulates IL-8 through oxidative stress and NF-κB pathway. The palmitate-induced inflammation in G6PD-deficient HepG2 cells could serve as an in vitro model to study the role of altered redox homeostasis in chronic hepatic inflammation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12950-015-0078-z) contains supplementary material, which is available to authorized users.