Cargando…
Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX
The hexameric AAA+ ring of Escherichia. coli ClpX, an ATP-dependent protein unfolding and translocation machine, functions with the ClpP peptidase to degrade target substrates. For efficient function, ClpX subunits must switch between nucleotide-loadable (L) and nucleotide-unloadable (U) conformatio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424054/ https://www.ncbi.nlm.nih.gov/pubmed/25866879 http://dx.doi.org/10.1038/nsmb.3012 |
Sumario: | The hexameric AAA+ ring of Escherichia. coli ClpX, an ATP-dependent protein unfolding and translocation machine, functions with the ClpP peptidase to degrade target substrates. For efficient function, ClpX subunits must switch between nucleotide-loadable (L) and nucleotide-unloadable (U) conformations, but the roles of switching are uncertain. Moreover, it is controversial whether working AAA+ ring enzymes assume symmetric or asymmetric conformations. Here, we show that a covalent ClpX ring with one subunit locked in the U conformation catalyzes robust ATP-hydrolysis, with each unlocked subunit able to bind and hydrolyze ATP, albeit with highly asymmetric position-specific affinities. Preventing U⇔L interconversion in one subunit alters the cooperativity of ATP hydrolysis and reduces the efficiency of substrate binding, unfolding, and degradation, showing that conformational switching enhances multiple aspects of wild-type ClpX function. These results support an asymmetric and probabilistic model of AAA+ ring activity. |
---|