Cargando…
How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography
We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study an...
Autores principales: | Jørgensen, J. S., Sidky, E. Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424483/ https://www.ncbi.nlm.nih.gov/pubmed/25939620 http://dx.doi.org/10.1098/rsta.2014.0387 |
Ejemplares similares
-
Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction
por: Kazantsev, Daniil, et al.
Publicado: (2016) -
Sparsity-Regularized HMAX for Visual Recognition
por: Hu, Xiaolin, et al.
Publicado: (2014) -
Bayesian 3D X-ray Computed Tomography with a Hierarchical Prior Model for Sparsity in Haar Transform Domain
por: Wang, Li, et al.
Publicado: (2018) -
Sparsity and locally low rank regularization for MR fingerprinting
por: Lima da Cruz, Gastão, et al.
Publicado: (2019) -
Backpropagation With Sparsity Regularization for Spiking Neural Network Learning
por: Yan, Yulong, et al.
Publicado: (2022)