Cargando…

Genome-wide Computational Analysis Reveals Cardiomyocyte-specific Transcriptional Cis-regulatory Motifs That Enable Efficient Cardiac Gene Therapy

Gene therapy is a promising emerging therapeutic modality for the treatment of cardiovascular diseases and hereditary diseases that afflict the heart. Hence, there is a need to develop robust cardiac-specific expression modules that allow for stable expression of the gene of interest in cardiomyocyt...

Descripción completa

Detalles Bibliográficos
Autores principales: Rincon, Melvin Y, Sarcar, Shilpita, Danso-Abeam, Dina, Keyaerts, Marleen, Matrai, Janka, Samara-Kuko, Ermira, Acosta-Sanchez, Abel, Athanasopoulos, Takis, Dickson, George, Lahoutte, Tony, De Bleser, Pieter, VandenDriessche, Thierry, Chuah, Marinee K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426801/
https://www.ncbi.nlm.nih.gov/pubmed/25195597
http://dx.doi.org/10.1038/mt.2014.178
_version_ 1782370639607234560
author Rincon, Melvin Y
Sarcar, Shilpita
Danso-Abeam, Dina
Keyaerts, Marleen
Matrai, Janka
Samara-Kuko, Ermira
Acosta-Sanchez, Abel
Athanasopoulos, Takis
Dickson, George
Lahoutte, Tony
De Bleser, Pieter
VandenDriessche, Thierry
Chuah, Marinee K
author_facet Rincon, Melvin Y
Sarcar, Shilpita
Danso-Abeam, Dina
Keyaerts, Marleen
Matrai, Janka
Samara-Kuko, Ermira
Acosta-Sanchez, Abel
Athanasopoulos, Takis
Dickson, George
Lahoutte, Tony
De Bleser, Pieter
VandenDriessche, Thierry
Chuah, Marinee K
author_sort Rincon, Melvin Y
collection PubMed
description Gene therapy is a promising emerging therapeutic modality for the treatment of cardiovascular diseases and hereditary diseases that afflict the heart. Hence, there is a need to develop robust cardiac-specific expression modules that allow for stable expression of the gene of interest in cardiomyocytes. We therefore explored a new approach based on a genome-wide bioinformatics strategy that revealed novel cardiac-specific cis-acting regulatory modules (CS-CRMs). These transcriptional modules contained evolutionary-conserved clusters of putative transcription factor binding sites that correspond to a “molecular signature” associated with robust gene expression in the heart. We then validated these CS-CRMs in vivo using an adeno-associated viral vector serotype 9 that drives a reporter gene from a quintessential cardiac-specific α-myosin heavy chain promoter. Most de novo designed CS-CRMs resulted in a >10-fold increase in cardiac gene expression. The most robust CRMs enhanced cardiac-specific transcription 70- to 100-fold. Expression was sustained and restricted to cardiomyocytes. We then combined the most potent CS-CRM4 with a synthetic heart and muscle-specific promoter (SPc5-12) and obtained a significant 20-fold increase in cardiac gene expression compared to the cytomegalovirus promoter. This study underscores the potential of rational vector design to improve the robustness of cardiac gene therapy.
format Online
Article
Text
id pubmed-4426801
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-44268012015-05-21 Genome-wide Computational Analysis Reveals Cardiomyocyte-specific Transcriptional Cis-regulatory Motifs That Enable Efficient Cardiac Gene Therapy Rincon, Melvin Y Sarcar, Shilpita Danso-Abeam, Dina Keyaerts, Marleen Matrai, Janka Samara-Kuko, Ermira Acosta-Sanchez, Abel Athanasopoulos, Takis Dickson, George Lahoutte, Tony De Bleser, Pieter VandenDriessche, Thierry Chuah, Marinee K Mol Ther Original Article Gene therapy is a promising emerging therapeutic modality for the treatment of cardiovascular diseases and hereditary diseases that afflict the heart. Hence, there is a need to develop robust cardiac-specific expression modules that allow for stable expression of the gene of interest in cardiomyocytes. We therefore explored a new approach based on a genome-wide bioinformatics strategy that revealed novel cardiac-specific cis-acting regulatory modules (CS-CRMs). These transcriptional modules contained evolutionary-conserved clusters of putative transcription factor binding sites that correspond to a “molecular signature” associated with robust gene expression in the heart. We then validated these CS-CRMs in vivo using an adeno-associated viral vector serotype 9 that drives a reporter gene from a quintessential cardiac-specific α-myosin heavy chain promoter. Most de novo designed CS-CRMs resulted in a >10-fold increase in cardiac gene expression. The most robust CRMs enhanced cardiac-specific transcription 70- to 100-fold. Expression was sustained and restricted to cardiomyocytes. We then combined the most potent CS-CRM4 with a synthetic heart and muscle-specific promoter (SPc5-12) and obtained a significant 20-fold increase in cardiac gene expression compared to the cytomegalovirus promoter. This study underscores the potential of rational vector design to improve the robustness of cardiac gene therapy. Nature Publishing Group 2015-01 2014-10-07 /pmc/articles/PMC4426801/ /pubmed/25195597 http://dx.doi.org/10.1038/mt.2014.178 Text en Copyright © 2015 American Society of Gene & Cell Therapy http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Original Article
Rincon, Melvin Y
Sarcar, Shilpita
Danso-Abeam, Dina
Keyaerts, Marleen
Matrai, Janka
Samara-Kuko, Ermira
Acosta-Sanchez, Abel
Athanasopoulos, Takis
Dickson, George
Lahoutte, Tony
De Bleser, Pieter
VandenDriessche, Thierry
Chuah, Marinee K
Genome-wide Computational Analysis Reveals Cardiomyocyte-specific Transcriptional Cis-regulatory Motifs That Enable Efficient Cardiac Gene Therapy
title Genome-wide Computational Analysis Reveals Cardiomyocyte-specific Transcriptional Cis-regulatory Motifs That Enable Efficient Cardiac Gene Therapy
title_full Genome-wide Computational Analysis Reveals Cardiomyocyte-specific Transcriptional Cis-regulatory Motifs That Enable Efficient Cardiac Gene Therapy
title_fullStr Genome-wide Computational Analysis Reveals Cardiomyocyte-specific Transcriptional Cis-regulatory Motifs That Enable Efficient Cardiac Gene Therapy
title_full_unstemmed Genome-wide Computational Analysis Reveals Cardiomyocyte-specific Transcriptional Cis-regulatory Motifs That Enable Efficient Cardiac Gene Therapy
title_short Genome-wide Computational Analysis Reveals Cardiomyocyte-specific Transcriptional Cis-regulatory Motifs That Enable Efficient Cardiac Gene Therapy
title_sort genome-wide computational analysis reveals cardiomyocyte-specific transcriptional cis-regulatory motifs that enable efficient cardiac gene therapy
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426801/
https://www.ncbi.nlm.nih.gov/pubmed/25195597
http://dx.doi.org/10.1038/mt.2014.178
work_keys_str_mv AT rinconmelviny genomewidecomputationalanalysisrevealscardiomyocytespecifictranscriptionalcisregulatorymotifsthatenableefficientcardiacgenetherapy
AT sarcarshilpita genomewidecomputationalanalysisrevealscardiomyocytespecifictranscriptionalcisregulatorymotifsthatenableefficientcardiacgenetherapy
AT dansoabeamdina genomewidecomputationalanalysisrevealscardiomyocytespecifictranscriptionalcisregulatorymotifsthatenableefficientcardiacgenetherapy
AT keyaertsmarleen genomewidecomputationalanalysisrevealscardiomyocytespecifictranscriptionalcisregulatorymotifsthatenableefficientcardiacgenetherapy
AT matraijanka genomewidecomputationalanalysisrevealscardiomyocytespecifictranscriptionalcisregulatorymotifsthatenableefficientcardiacgenetherapy
AT samarakukoermira genomewidecomputationalanalysisrevealscardiomyocytespecifictranscriptionalcisregulatorymotifsthatenableefficientcardiacgenetherapy
AT acostasanchezabel genomewidecomputationalanalysisrevealscardiomyocytespecifictranscriptionalcisregulatorymotifsthatenableefficientcardiacgenetherapy
AT athanasopoulostakis genomewidecomputationalanalysisrevealscardiomyocytespecifictranscriptionalcisregulatorymotifsthatenableefficientcardiacgenetherapy
AT dicksongeorge genomewidecomputationalanalysisrevealscardiomyocytespecifictranscriptionalcisregulatorymotifsthatenableefficientcardiacgenetherapy
AT lahouttetony genomewidecomputationalanalysisrevealscardiomyocytespecifictranscriptionalcisregulatorymotifsthatenableefficientcardiacgenetherapy
AT debleserpieter genomewidecomputationalanalysisrevealscardiomyocytespecifictranscriptionalcisregulatorymotifsthatenableefficientcardiacgenetherapy
AT vandendriesschethierry genomewidecomputationalanalysisrevealscardiomyocytespecifictranscriptionalcisregulatorymotifsthatenableefficientcardiacgenetherapy
AT chuahmarineek genomewidecomputationalanalysisrevealscardiomyocytespecifictranscriptionalcisregulatorymotifsthatenableefficientcardiacgenetherapy