Cargando…
MADGiC: a model-based approach for identifying driver genes in cancer
Motivation: Identifying and prioritizing somatic mutations is an important and challenging area of cancer research that can provide new insights into gene function as well as new targets for drug development. Most methods for prioritizing mutations rely primarily on frequency-based criteria, where a...
Autores principales: | Korthauer, Keegan D., Kendziorski, Christina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4426832/ https://www.ncbi.nlm.nih.gov/pubmed/25573922 http://dx.doi.org/10.1093/bioinformatics/btu858 |
Ejemplares similares
-
A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
por: Korthauer, Keegan D., et al.
Publicado: (2016) -
A Comparative Study of Airway Nerve Blocks and Atomized Lidocaine by the Laryngo-Tracheal Mucosal Atomization Device (LMA MADgic) Airway for Oral Awake Fiberoptic Intubation
por: Yadav, Urvashi, et al.
Publicado: (2021) -
EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments
por: Leng, Ning, et al.
Publicado: (2015) -
Statistical methods for gene set co-expression analysis
por: Choi, YounJeong, et al.
Publicado: (2009) -
A CATH domain functional family based approach to identify putative cancer driver genes and driver mutations
por: Ashford, Paul, et al.
Publicado: (2019)