Cargando…

eEF-2 Phosphorylation Down-Regulates P-Glycoprotein Over-Expression in Rat Brain Microvessel Endothelial Cells

OBJECTIVE: We investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K)/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs). METHODS: Co...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Xing Hua, Wu, Xun Yi, Xu, Lan, Fang, You Xin, Wang, Ping, Zhu, Guo Xing, Hong, Zhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427111/
https://www.ncbi.nlm.nih.gov/pubmed/25962137
http://dx.doi.org/10.1371/journal.pone.0125389
Descripción
Sumario:OBJECTIVE: We investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K)/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs). METHODS: Cortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR. RESULTS: Mdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs. CONCLUSIONS: eEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.