Cargando…
Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies
BACKGROUND: Lysosomal dysfunction is thought to be a prominent feature in the pathogenetic events leading to Parkinson’s disease (PD). This view is supported by the evidence that mutations in GBA gene, coding the lysosomal hydrolase β-glucocerebrosidase (GCase), are a common genetic risk factor for...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428238/ https://www.ncbi.nlm.nih.gov/pubmed/25881142 http://dx.doi.org/10.1186/s13024-015-0010-2 |
_version_ | 1782370860665929728 |
---|---|
author | Chiasserini, Davide Paciotti, Silvia Eusebi, Paolo Persichetti, Emanuele Tasegian, Anna Kurzawa-Akanbi, Marzena Chinnery, Patrick F Morris, Christopher M Calabresi, Paolo Parnetti, Lucilla Beccari, Tommaso |
author_facet | Chiasserini, Davide Paciotti, Silvia Eusebi, Paolo Persichetti, Emanuele Tasegian, Anna Kurzawa-Akanbi, Marzena Chinnery, Patrick F Morris, Christopher M Calabresi, Paolo Parnetti, Lucilla Beccari, Tommaso |
author_sort | Chiasserini, Davide |
collection | PubMed |
description | BACKGROUND: Lysosomal dysfunction is thought to be a prominent feature in the pathogenetic events leading to Parkinson’s disease (PD). This view is supported by the evidence that mutations in GBA gene, coding the lysosomal hydrolase β-glucocerebrosidase (GCase), are a common genetic risk factor for PD. Recently, GCase activity has been shown to be decreased in substantia nigra and in cerebrospinal fluid of patients diagnosed with PD or dementia with Lewy Bodies (DLB). Here we measured the activity of GCase and other endo-lysosomal enzymes in different brain regions (frontal cortex, caudate, hippocampus, substantia nigra, cerebellum) from PD (n = 26), DLB (n = 16) and age-matched control (n = 13) subjects, screened for GBA mutations. The relative changes in GCase gene expression in substantia nigra were also quantified by real-time PCR. The role of potential confounders (age, sex and post-mortem delay) was also determined. FINDINGS: Substantia nigra showed a high activity level for almost all the lysosomal enzymes assessed. GCase activity was significantly decreased in the caudate (−23%) and substantia nigra (−12%) of the PD group; the same trend was observed in DLB. In both groups, a decrease in GCase mRNA was documented in substantia nigra. No other lysosomal hydrolase defects were determined. CONCLUSION: The high level of lysosomal enzymes activity observed in substantia nigra, together with the selective reduction of GCase in PD and DLB patients, further support the link between lysosomal dysfunction and PD pathogenesis, favoring the possible role of GCase as biomarker of synucleinopathy. Mapping the lysosomal enzyme activities across different brain areas can further contribute to the understanding of the role of lysosomal derangement in PD and other synucleinopathies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13024-015-0010-2) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4428238 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-44282382015-05-13 Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies Chiasserini, Davide Paciotti, Silvia Eusebi, Paolo Persichetti, Emanuele Tasegian, Anna Kurzawa-Akanbi, Marzena Chinnery, Patrick F Morris, Christopher M Calabresi, Paolo Parnetti, Lucilla Beccari, Tommaso Mol Neurodegener Short Report BACKGROUND: Lysosomal dysfunction is thought to be a prominent feature in the pathogenetic events leading to Parkinson’s disease (PD). This view is supported by the evidence that mutations in GBA gene, coding the lysosomal hydrolase β-glucocerebrosidase (GCase), are a common genetic risk factor for PD. Recently, GCase activity has been shown to be decreased in substantia nigra and in cerebrospinal fluid of patients diagnosed with PD or dementia with Lewy Bodies (DLB). Here we measured the activity of GCase and other endo-lysosomal enzymes in different brain regions (frontal cortex, caudate, hippocampus, substantia nigra, cerebellum) from PD (n = 26), DLB (n = 16) and age-matched control (n = 13) subjects, screened for GBA mutations. The relative changes in GCase gene expression in substantia nigra were also quantified by real-time PCR. The role of potential confounders (age, sex and post-mortem delay) was also determined. FINDINGS: Substantia nigra showed a high activity level for almost all the lysosomal enzymes assessed. GCase activity was significantly decreased in the caudate (−23%) and substantia nigra (−12%) of the PD group; the same trend was observed in DLB. In both groups, a decrease in GCase mRNA was documented in substantia nigra. No other lysosomal hydrolase defects were determined. CONCLUSION: The high level of lysosomal enzymes activity observed in substantia nigra, together with the selective reduction of GCase in PD and DLB patients, further support the link between lysosomal dysfunction and PD pathogenesis, favoring the possible role of GCase as biomarker of synucleinopathy. Mapping the lysosomal enzyme activities across different brain areas can further contribute to the understanding of the role of lysosomal derangement in PD and other synucleinopathies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13024-015-0010-2) contains supplementary material, which is available to authorized users. BioMed Central 2015-03-27 /pmc/articles/PMC4428238/ /pubmed/25881142 http://dx.doi.org/10.1186/s13024-015-0010-2 Text en © Chiasserini et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Short Report Chiasserini, Davide Paciotti, Silvia Eusebi, Paolo Persichetti, Emanuele Tasegian, Anna Kurzawa-Akanbi, Marzena Chinnery, Patrick F Morris, Christopher M Calabresi, Paolo Parnetti, Lucilla Beccari, Tommaso Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies |
title | Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies |
title_full | Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies |
title_fullStr | Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies |
title_full_unstemmed | Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies |
title_short | Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies |
title_sort | selective loss of glucocerebrosidase activity in sporadic parkinson’s disease and dementia with lewy bodies |
topic | Short Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428238/ https://www.ncbi.nlm.nih.gov/pubmed/25881142 http://dx.doi.org/10.1186/s13024-015-0010-2 |
work_keys_str_mv | AT chiasserinidavide selectivelossofglucocerebrosidaseactivityinsporadicparkinsonsdiseaseanddementiawithlewybodies AT paciottisilvia selectivelossofglucocerebrosidaseactivityinsporadicparkinsonsdiseaseanddementiawithlewybodies AT eusebipaolo selectivelossofglucocerebrosidaseactivityinsporadicparkinsonsdiseaseanddementiawithlewybodies AT persichettiemanuele selectivelossofglucocerebrosidaseactivityinsporadicparkinsonsdiseaseanddementiawithlewybodies AT tasegiananna selectivelossofglucocerebrosidaseactivityinsporadicparkinsonsdiseaseanddementiawithlewybodies AT kurzawaakanbimarzena selectivelossofglucocerebrosidaseactivityinsporadicparkinsonsdiseaseanddementiawithlewybodies AT chinnerypatrickf selectivelossofglucocerebrosidaseactivityinsporadicparkinsonsdiseaseanddementiawithlewybodies AT morrischristopherm selectivelossofglucocerebrosidaseactivityinsporadicparkinsonsdiseaseanddementiawithlewybodies AT calabresipaolo selectivelossofglucocerebrosidaseactivityinsporadicparkinsonsdiseaseanddementiawithlewybodies AT parnettilucilla selectivelossofglucocerebrosidaseactivityinsporadicparkinsonsdiseaseanddementiawithlewybodies AT beccaritommaso selectivelossofglucocerebrosidaseactivityinsporadicparkinsonsdiseaseanddementiawithlewybodies |