Cargando…

Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts

Reprogramming somatic cells from one cell fate to another can generate specific neurons suitable for disease modeling. To maximize the utility of patient-derived neurons, they must model not only disease-relevant cell classes but also the diversity of neuronal subtypes found in vivo and the pathophy...

Descripción completa

Detalles Bibliográficos
Autores principales: Wainger, Brian J., Buttermore, Elizabeth D., Oliveira, Julia T., Mellin, Cassidy, Lee, Seungkyu, Saber, Wardiya Afshar, Wang, Amy, Ichida, Justin K., Chiu, Isaac M., Barrett, Lee, Huebner, Eric A., Bilgin, Canan, Tsujimoto, Naomi, Brenneis, Christian, Kapur, Kush, Rubin, Lee L., Eggan, Kevin, Woolf, Clifford J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429606/
https://www.ncbi.nlm.nih.gov/pubmed/25420066
http://dx.doi.org/10.1038/nn.3886
_version_ 1782371064178802688
author Wainger, Brian J.
Buttermore, Elizabeth D.
Oliveira, Julia T.
Mellin, Cassidy
Lee, Seungkyu
Saber, Wardiya Afshar
Wang, Amy
Ichida, Justin K.
Chiu, Isaac M.
Barrett, Lee
Huebner, Eric A.
Bilgin, Canan
Tsujimoto, Naomi
Brenneis, Christian
Kapur, Kush
Rubin, Lee L.
Eggan, Kevin
Woolf, Clifford J.
author_facet Wainger, Brian J.
Buttermore, Elizabeth D.
Oliveira, Julia T.
Mellin, Cassidy
Lee, Seungkyu
Saber, Wardiya Afshar
Wang, Amy
Ichida, Justin K.
Chiu, Isaac M.
Barrett, Lee
Huebner, Eric A.
Bilgin, Canan
Tsujimoto, Naomi
Brenneis, Christian
Kapur, Kush
Rubin, Lee L.
Eggan, Kevin
Woolf, Clifford J.
author_sort Wainger, Brian J.
collection PubMed
description Reprogramming somatic cells from one cell fate to another can generate specific neurons suitable for disease modeling. To maximize the utility of patient-derived neurons, they must model not only disease-relevant cell classes but also the diversity of neuronal subtypes found in vivo and the pathophysiological changes that underlie specific clinical diseases. Here, we identify five transcription factors that reprogram mouse and human fibroblasts into noxious stimulus-detecting (nociceptor) neurons that recapitulate the expression of quintessential nociceptor-specific functional receptors and channels found in adult mouse nociceptor neurons as well as native subtype diversity. Moreover, the derived nociceptor neurons exhibit TrpV1 sensitization to the inflammatory mediator prostaglandin E2 and the chemotherapeutic drug oxaliplatin, modeling the inherent mechanisms underlying inflammatory pain hypersensitivity and painful chemotherapy-induced neuropathy. Using fibroblasts from patients with familial dysautonomia (hereditary sensory and autonomic neuropathy type III), we show that the technique can reveal novel aspects of human disease phenotypes in vitro.
format Online
Article
Text
id pubmed-4429606
institution National Center for Biotechnology Information
language English
publishDate 2014
record_format MEDLINE/PubMed
spelling pubmed-44296062015-07-01 Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts Wainger, Brian J. Buttermore, Elizabeth D. Oliveira, Julia T. Mellin, Cassidy Lee, Seungkyu Saber, Wardiya Afshar Wang, Amy Ichida, Justin K. Chiu, Isaac M. Barrett, Lee Huebner, Eric A. Bilgin, Canan Tsujimoto, Naomi Brenneis, Christian Kapur, Kush Rubin, Lee L. Eggan, Kevin Woolf, Clifford J. Nat Neurosci Article Reprogramming somatic cells from one cell fate to another can generate specific neurons suitable for disease modeling. To maximize the utility of patient-derived neurons, they must model not only disease-relevant cell classes but also the diversity of neuronal subtypes found in vivo and the pathophysiological changes that underlie specific clinical diseases. Here, we identify five transcription factors that reprogram mouse and human fibroblasts into noxious stimulus-detecting (nociceptor) neurons that recapitulate the expression of quintessential nociceptor-specific functional receptors and channels found in adult mouse nociceptor neurons as well as native subtype diversity. Moreover, the derived nociceptor neurons exhibit TrpV1 sensitization to the inflammatory mediator prostaglandin E2 and the chemotherapeutic drug oxaliplatin, modeling the inherent mechanisms underlying inflammatory pain hypersensitivity and painful chemotherapy-induced neuropathy. Using fibroblasts from patients with familial dysautonomia (hereditary sensory and autonomic neuropathy type III), we show that the technique can reveal novel aspects of human disease phenotypes in vitro. 2014-11-24 2015-01 /pmc/articles/PMC4429606/ /pubmed/25420066 http://dx.doi.org/10.1038/nn.3886 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Wainger, Brian J.
Buttermore, Elizabeth D.
Oliveira, Julia T.
Mellin, Cassidy
Lee, Seungkyu
Saber, Wardiya Afshar
Wang, Amy
Ichida, Justin K.
Chiu, Isaac M.
Barrett, Lee
Huebner, Eric A.
Bilgin, Canan
Tsujimoto, Naomi
Brenneis, Christian
Kapur, Kush
Rubin, Lee L.
Eggan, Kevin
Woolf, Clifford J.
Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts
title Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts
title_full Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts
title_fullStr Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts
title_full_unstemmed Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts
title_short Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts
title_sort modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429606/
https://www.ncbi.nlm.nih.gov/pubmed/25420066
http://dx.doi.org/10.1038/nn.3886
work_keys_str_mv AT waingerbrianj modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT buttermoreelizabethd modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT oliveirajuliat modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT mellincassidy modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT leeseungkyu modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT saberwardiyaafshar modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT wangamy modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT ichidajustink modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT chiuisaacm modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT barrettlee modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT huebnererica modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT bilgincanan modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT tsujimotonaomi modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT brenneischristian modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT kapurkush modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT rubinleel modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT eggankevin modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts
AT woolfcliffordj modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts