Cargando…
Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts
Reprogramming somatic cells from one cell fate to another can generate specific neurons suitable for disease modeling. To maximize the utility of patient-derived neurons, they must model not only disease-relevant cell classes but also the diversity of neuronal subtypes found in vivo and the pathophy...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429606/ https://www.ncbi.nlm.nih.gov/pubmed/25420066 http://dx.doi.org/10.1038/nn.3886 |
_version_ | 1782371064178802688 |
---|---|
author | Wainger, Brian J. Buttermore, Elizabeth D. Oliveira, Julia T. Mellin, Cassidy Lee, Seungkyu Saber, Wardiya Afshar Wang, Amy Ichida, Justin K. Chiu, Isaac M. Barrett, Lee Huebner, Eric A. Bilgin, Canan Tsujimoto, Naomi Brenneis, Christian Kapur, Kush Rubin, Lee L. Eggan, Kevin Woolf, Clifford J. |
author_facet | Wainger, Brian J. Buttermore, Elizabeth D. Oliveira, Julia T. Mellin, Cassidy Lee, Seungkyu Saber, Wardiya Afshar Wang, Amy Ichida, Justin K. Chiu, Isaac M. Barrett, Lee Huebner, Eric A. Bilgin, Canan Tsujimoto, Naomi Brenneis, Christian Kapur, Kush Rubin, Lee L. Eggan, Kevin Woolf, Clifford J. |
author_sort | Wainger, Brian J. |
collection | PubMed |
description | Reprogramming somatic cells from one cell fate to another can generate specific neurons suitable for disease modeling. To maximize the utility of patient-derived neurons, they must model not only disease-relevant cell classes but also the diversity of neuronal subtypes found in vivo and the pathophysiological changes that underlie specific clinical diseases. Here, we identify five transcription factors that reprogram mouse and human fibroblasts into noxious stimulus-detecting (nociceptor) neurons that recapitulate the expression of quintessential nociceptor-specific functional receptors and channels found in adult mouse nociceptor neurons as well as native subtype diversity. Moreover, the derived nociceptor neurons exhibit TrpV1 sensitization to the inflammatory mediator prostaglandin E2 and the chemotherapeutic drug oxaliplatin, modeling the inherent mechanisms underlying inflammatory pain hypersensitivity and painful chemotherapy-induced neuropathy. Using fibroblasts from patients with familial dysautonomia (hereditary sensory and autonomic neuropathy type III), we show that the technique can reveal novel aspects of human disease phenotypes in vitro. |
format | Online Article Text |
id | pubmed-4429606 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
record_format | MEDLINE/PubMed |
spelling | pubmed-44296062015-07-01 Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts Wainger, Brian J. Buttermore, Elizabeth D. Oliveira, Julia T. Mellin, Cassidy Lee, Seungkyu Saber, Wardiya Afshar Wang, Amy Ichida, Justin K. Chiu, Isaac M. Barrett, Lee Huebner, Eric A. Bilgin, Canan Tsujimoto, Naomi Brenneis, Christian Kapur, Kush Rubin, Lee L. Eggan, Kevin Woolf, Clifford J. Nat Neurosci Article Reprogramming somatic cells from one cell fate to another can generate specific neurons suitable for disease modeling. To maximize the utility of patient-derived neurons, they must model not only disease-relevant cell classes but also the diversity of neuronal subtypes found in vivo and the pathophysiological changes that underlie specific clinical diseases. Here, we identify five transcription factors that reprogram mouse and human fibroblasts into noxious stimulus-detecting (nociceptor) neurons that recapitulate the expression of quintessential nociceptor-specific functional receptors and channels found in adult mouse nociceptor neurons as well as native subtype diversity. Moreover, the derived nociceptor neurons exhibit TrpV1 sensitization to the inflammatory mediator prostaglandin E2 and the chemotherapeutic drug oxaliplatin, modeling the inherent mechanisms underlying inflammatory pain hypersensitivity and painful chemotherapy-induced neuropathy. Using fibroblasts from patients with familial dysautonomia (hereditary sensory and autonomic neuropathy type III), we show that the technique can reveal novel aspects of human disease phenotypes in vitro. 2014-11-24 2015-01 /pmc/articles/PMC4429606/ /pubmed/25420066 http://dx.doi.org/10.1038/nn.3886 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Wainger, Brian J. Buttermore, Elizabeth D. Oliveira, Julia T. Mellin, Cassidy Lee, Seungkyu Saber, Wardiya Afshar Wang, Amy Ichida, Justin K. Chiu, Isaac M. Barrett, Lee Huebner, Eric A. Bilgin, Canan Tsujimoto, Naomi Brenneis, Christian Kapur, Kush Rubin, Lee L. Eggan, Kevin Woolf, Clifford J. Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts |
title | Modeling pain in vitro using nociceptor neurons reprogrammed
from fibroblasts |
title_full | Modeling pain in vitro using nociceptor neurons reprogrammed
from fibroblasts |
title_fullStr | Modeling pain in vitro using nociceptor neurons reprogrammed
from fibroblasts |
title_full_unstemmed | Modeling pain in vitro using nociceptor neurons reprogrammed
from fibroblasts |
title_short | Modeling pain in vitro using nociceptor neurons reprogrammed
from fibroblasts |
title_sort | modeling pain in vitro using nociceptor neurons reprogrammed
from fibroblasts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429606/ https://www.ncbi.nlm.nih.gov/pubmed/25420066 http://dx.doi.org/10.1038/nn.3886 |
work_keys_str_mv | AT waingerbrianj modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT buttermoreelizabethd modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT oliveirajuliat modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT mellincassidy modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT leeseungkyu modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT saberwardiyaafshar modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT wangamy modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT ichidajustink modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT chiuisaacm modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT barrettlee modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT huebnererica modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT bilgincanan modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT tsujimotonaomi modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT brenneischristian modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT kapurkush modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT rubinleel modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT eggankevin modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts AT woolfcliffordj modelingpaininvitrousingnociceptorneuronsreprogrammedfromfibroblasts |