Cargando…
Hedgehog/GLI and PI3K signaling in the initiation and maintenance of chronic lymphocytic leukemia
The initiation and maintenance of a malignant phenotype requires complex and synergistic interactions of multiple oncogenic signals. The Hedgehog (HH)/GLI pathway has been implicated in a variety of cancer entities and targeted pathway inhibition is of therapeutic relevance. Signal cross-talk with o...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430320/ https://www.ncbi.nlm.nih.gov/pubmed/25639866 http://dx.doi.org/10.1038/onc.2014.450 |
Sumario: | The initiation and maintenance of a malignant phenotype requires complex and synergistic interactions of multiple oncogenic signals. The Hedgehog (HH)/GLI pathway has been implicated in a variety of cancer entities and targeted pathway inhibition is of therapeutic relevance. Signal cross-talk with other cancer pathways including PI3K/AKT modulates HH/GLI signal strength and its oncogenicity. In this study, we addressed the role of HH/GLI and its putative interaction with the PI3K/AKT cascade in the initiation and maintenance of chronic lymphocytic leukemia (CLL). Using transgenic mouse models, we show that B-cell-specific constitutive activation of HH/GLI signaling either at the level of the HH effector and drug target Smoothened or at the level of the GLI transcription factors does not suffice to initiate a CLL-like phenotype characterized by the accumulation of CD5(+) B cells in the lymphatic system and peripheral blood. Furthermore, Hh/Gli activation in Pten-deficient B cells with activated Pi3K/Akt signaling failed to enhance the expansion of leukemic CD5(+) B cells, suggesting that genetic or epigenetic alterations leading to aberrant HH/GLI signaling in B cells do not suffice to elicit a CLL-like phenotype in mice. By contrast, we identify a critical role of GLI and PI3K signaling for the survival of human primary CLL cells. We show that combined targeting of GLI and PI3K/AKT/mTOR signaling can have a synergistic therapeutic effect in cells from a subgroup of CLL patients, thereby providing a basis for the evaluation of future combination therapies targeting HH/GLI and PI3K signaling in this common hematopoietic malignancy. |
---|