Cargando…

Binding of the Antagonist Caffeine to the Human Adenosine Receptor hA(2A)R in Nearly Physiological Conditions

Lipid composition may significantly affect membrane proteins function, yet its impact on the protein structural determinants is not well understood. Here we present a comparative molecular dynamics (MD) study of the human adenosine receptor type 2A (hA(2A)R) in complex with caffeine—a system of high...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Ruyin, Rossetti, Giulia, Bauer, Andreas, CarIoni, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4439127/
https://www.ncbi.nlm.nih.gov/pubmed/25992797
http://dx.doi.org/10.1371/journal.pone.0126833
Descripción
Sumario:Lipid composition may significantly affect membrane proteins function, yet its impact on the protein structural determinants is not well understood. Here we present a comparative molecular dynamics (MD) study of the human adenosine receptor type 2A (hA(2A)R) in complex with caffeine—a system of high neuro-pharmacological relevance—within different membrane types. These are POPC, mixed POPC/POPE and cholesterol-rich membranes. 0.8-μs MD simulations unambiguously show that the helical folding of the amphipathic helix 8 depends on membrane contents. Most importantly, the distinct cholesterol binding into the cleft between helix 1 and 2 stabilizes a specific caffeine-binding pose against others visited during the simulation. Hence, cholesterol presence (~33%-50% in synaptic membrane in central nervous system), often neglected in X-ray determination of membrane proteins, affects the population of the ligand binding poses. We conclude that including a correct description of neuronal membranes may be very important for computer-aided design of ligands targeting hA(2A)R and possibly other GPCRs.