Cargando…

Diurnal and stress‐induced intra‐hippocampal corticosterone rise attenuated in 11β‐HSD1‐deficient mice: a microdialysis study in young and aged mice

11β‐Hydroxysteroid dehydrogenase type 1 (11β‐HSD1) locally regenerates active glucocorticoids from their inert forms thereby amplifying intracellular levels within target tissues including the brain. We previously showed greater increases in intra‐hippocampal corticosterone (CORT) levels upon Y‐maze...

Descripción completa

Detalles Bibliográficos
Autores principales: Yau, Joyce L. W., Noble, June, Kenyon, Christopher J., Ludwig, Mike, Seckl, Jonathan R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440343/
https://www.ncbi.nlm.nih.gov/pubmed/25614240
http://dx.doi.org/10.1111/ejn.12836
Descripción
Sumario:11β‐Hydroxysteroid dehydrogenase type 1 (11β‐HSD1) locally regenerates active glucocorticoids from their inert forms thereby amplifying intracellular levels within target tissues including the brain. We previously showed greater increases in intra‐hippocampal corticosterone (CORT) levels upon Y‐maze testing in aged wild‐type than in 11β‐HSD1(−/−) mice coinciding with impaired and intact spatial memory, respectively. Here we examined whether ageing influences 11β‐HSD1 regulation of CORT in the dorsal hippocampus under basal conditions during the diurnal cycle and following stress. Intra‐hippocampal CORT levels measured by in vivo microdialysis in freely behaving wild‐type mice displayed a diurnal variation with peak levels in the evening that were significantly elevated with ageing. In contrast, the diurnal rise in intra‐hippocampal CORT levels was greatly diminished in 11β‐HSD1(−/−) mice and there was no rise with ageing; basal intra‐hippocampal CORT levels were similar to wild‐type controls. Furthermore, a short (3 min) swim stress induced a longer lasting increase in intra‐hippocampal CORT levels in wild‐type mice than in 11β‐HSD1(−/−) mice despite no genotypic differences in elevation of plasma CORT. These data indicate that 11β‐HSD1 activity contributes substantially to diurnal and stress‐induced increases in hippocampal CORT levels. This contribution is even greater with ageing. Thus, 11β‐HSD1 inhibition may be an attractive target for treating cognitive impairments associated with stress or ageing.