Cargando…

Downregulation of the Host Gene jigr1 by miR-92 Is Essential for Neuroblast Self-Renewal in Drosophila

Intragenic microRNAs (miRNAs), located mostly in the introns of protein-coding genes, are often co-expressed with their host mRNAs. However, their functional interaction in development is largely unknown. Here we show that in Drosophila, miR-92a and miR-92b are embedded in the intron and 3’UTR of ji...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuva-Aydemir, Yeliz, Xu, Xia-Lian, Aydemir, Ozkan, Gascon, Eduardo, Sayin, Serkan, Zhou, Wenke, Hong, Yang, Gao, Fen-Biao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441384/
https://www.ncbi.nlm.nih.gov/pubmed/26000445
http://dx.doi.org/10.1371/journal.pgen.1005264
Descripción
Sumario:Intragenic microRNAs (miRNAs), located mostly in the introns of protein-coding genes, are often co-expressed with their host mRNAs. However, their functional interaction in development is largely unknown. Here we show that in Drosophila, miR-92a and miR-92b are embedded in the intron and 3’UTR of jigr1, respectively, and co-expressed with some jigr1 isoforms. miR-92a and miR-92b are highly expressed in neuroblasts of larval brain where Jigr1 expression is low. Genetic deletion of both miR-92a and miR-92b demonstrates an essential cell-autonomous role for these miRNAs in maintaining neuroblast self-renewal through inhibiting premature differentiation. We also show that miR-92a and miR-92b directly target jigr1 in vivo and that some phenotypes due to the absence of these miRNAs are partially rescued by reducing the level of jigr1. These results reveal a novel function of the miR-92 family in Drosophila neuroblasts and provide another example that local negative feedback regulation of host genes by intragenic miRNAs is essential for animal development.