Cargando…
Quantifying the cumulative effect of low-penetrance genetic variants on breast cancer risk
Many common diseases have a complex genetic basis in which large numbers of genetic variations combine with environmental factors to determine risk. However, quantifying such polygenic effects has been challenging. In order to address these difficulties we developed a global measure of the informati...
Autores principales: | Smyth, Conor, Špakulová, Iva, Cotton-Barratt, Owen, Rafiq, Sajjad, Tapper, William, Upstill-Goddard, Rosanna, Hopper, John L, Makalic, Enes, Schmidt, Daniel F, Kapuscinski, Miroslav, Fliege, Jörg, Collins, Andrew, Brodzki, Jacek, Eccles, Diana M, MacArthur, Ben D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444159/ https://www.ncbi.nlm.nih.gov/pubmed/26029704 http://dx.doi.org/10.1002/mgg3.129 |
Ejemplares similares
-
Support Vector Machine Classifier for Estrogen Receptor Positive and Negative Early-Onset Breast Cancer
por: Upstill-Goddard, Rosanna, et al.
Publicado: (2013) -
A Genome Wide Meta-Analysis Study for Identification of Common Variation Associated with Breast Cancer Prognosis
por: Rafiq, Sajjad, et al.
Publicado: (2014) -
Prediction of the
Penetration Radius of Cumulative
Blasting
por: Jia, Jinzhang, et al.
Publicado: (2023) -
‘Next-generation’ genome wide association studies
por: Hopper, J, et al.
Publicado: (2012) -
Minimum Message Length Inference of the Exponential Distribution with Type I Censoring
por: Makalic, Enes, et al.
Publicado: (2021)