Theoretical analysis of the cost of antagonistic activity for aquatic bacteria in oligotrophic environments
Many strains of bacteria produce antagonistic substances that restrain the growth of others, and potentially give them a competitive advantage. These substances are commonly released to the surrounding environment, involving metabolic costs in terms of energy and nutrients. The rate at which these m...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444843/ https://www.ncbi.nlm.nih.gov/pubmed/26074891 http://dx.doi.org/10.3389/fmicb.2015.00490 |
_version_ | 1782373200409133056 |
---|---|
author | Aguirre-von-Wobeser, Eneas Eguiarte, Luis E. Souza, Valeria Soberón-Chávez, Gloria |
author_facet | Aguirre-von-Wobeser, Eneas Eguiarte, Luis E. Souza, Valeria Soberón-Chávez, Gloria |
author_sort | Aguirre-von-Wobeser, Eneas |
collection | PubMed |
description | Many strains of bacteria produce antagonistic substances that restrain the growth of others, and potentially give them a competitive advantage. These substances are commonly released to the surrounding environment, involving metabolic costs in terms of energy and nutrients. The rate at which these molecules need to be produced to maintain a certain amount of them close to the producing cell before they are diluted into the environment has not been explored so far. To understand the potential cost of production of antagonistic substances in water environments, we used two different theoretical approaches. Using a probabilistic model, we determined the rate at which a cell needs to produce individual molecules in order to keep on average a single molecule in its vicinity at all times. For this minimum protection, a cell would need to invest 3.92 × 10(−22) kg s(−1) of organic matter, which is 9 orders of magnitude lower than the estimated expense for growth. Next, we used a continuous model, based on Fick's laws, to explore the production rate needed to sustain minimum inhibitory concentrations around a cell, which would provide much more protection from competitors. In this scenario, cells would need to invest 1.20 × 10(−11) kg s(−1), which is 2 orders of magnitude higher than the estimated expense for growth, and thus not sustainable. We hypothesize that the production of antimicrobial compounds by bacteria in aquatic environments lies between these two extremes. |
format | Online Article Text |
id | pubmed-4444843 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-44448432015-06-12 Theoretical analysis of the cost of antagonistic activity for aquatic bacteria in oligotrophic environments Aguirre-von-Wobeser, Eneas Eguiarte, Luis E. Souza, Valeria Soberón-Chávez, Gloria Front Microbiol Microbiology Many strains of bacteria produce antagonistic substances that restrain the growth of others, and potentially give them a competitive advantage. These substances are commonly released to the surrounding environment, involving metabolic costs in terms of energy and nutrients. The rate at which these molecules need to be produced to maintain a certain amount of them close to the producing cell before they are diluted into the environment has not been explored so far. To understand the potential cost of production of antagonistic substances in water environments, we used two different theoretical approaches. Using a probabilistic model, we determined the rate at which a cell needs to produce individual molecules in order to keep on average a single molecule in its vicinity at all times. For this minimum protection, a cell would need to invest 3.92 × 10(−22) kg s(−1) of organic matter, which is 9 orders of magnitude lower than the estimated expense for growth. Next, we used a continuous model, based on Fick's laws, to explore the production rate needed to sustain minimum inhibitory concentrations around a cell, which would provide much more protection from competitors. In this scenario, cells would need to invest 1.20 × 10(−11) kg s(−1), which is 2 orders of magnitude higher than the estimated expense for growth, and thus not sustainable. We hypothesize that the production of antimicrobial compounds by bacteria in aquatic environments lies between these two extremes. Frontiers Media S.A. 2015-05-27 /pmc/articles/PMC4444843/ /pubmed/26074891 http://dx.doi.org/10.3389/fmicb.2015.00490 Text en Copyright © 2015 Aguirre-von-Wobeser, Eguiarte, Souza and Soberón-Chávez. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Aguirre-von-Wobeser, Eneas Eguiarte, Luis E. Souza, Valeria Soberón-Chávez, Gloria Theoretical analysis of the cost of antagonistic activity for aquatic bacteria in oligotrophic environments |
title | Theoretical analysis of the cost of antagonistic activity for aquatic bacteria in oligotrophic environments |
title_full | Theoretical analysis of the cost of antagonistic activity for aquatic bacteria in oligotrophic environments |
title_fullStr | Theoretical analysis of the cost of antagonistic activity for aquatic bacteria in oligotrophic environments |
title_full_unstemmed | Theoretical analysis of the cost of antagonistic activity for aquatic bacteria in oligotrophic environments |
title_short | Theoretical analysis of the cost of antagonistic activity for aquatic bacteria in oligotrophic environments |
title_sort | theoretical analysis of the cost of antagonistic activity for aquatic bacteria in oligotrophic environments |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444843/ https://www.ncbi.nlm.nih.gov/pubmed/26074891 http://dx.doi.org/10.3389/fmicb.2015.00490 |
work_keys_str_mv | AT aguirrevonwobesereneas theoreticalanalysisofthecostofantagonisticactivityforaquaticbacteriainoligotrophicenvironments AT eguiarteluise theoreticalanalysisofthecostofantagonisticactivityforaquaticbacteriainoligotrophicenvironments AT souzavaleria theoreticalanalysisofthecostofantagonisticactivityforaquaticbacteriainoligotrophicenvironments AT soberonchavezgloria theoreticalanalysisofthecostofantagonisticactivityforaquaticbacteriainoligotrophicenvironments |