Cargando…

AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation

Lipid droplets (LDs) are intracellular organelles that provide fatty acids (FAs) to cellular processes including synthesis of membranes and production of metabolic energy. While known to move bidirectionally along microtubules (MTs), the role of LD motion and whether it facilitates interaction with...

Descripción completa

Detalles Bibliográficos
Autores principales: Herms, Albert, Bosch, Marta, Reddy, Babu J.N., Schieber, Nicole L., Fajardo, Alba, Rupérez, Celia, Fernández-Vidal, Andrea, Ferguson, Charles, Rentero, Carles, Tebar, Francesc, Enrich, Carlos, Parton, Robert G., Gross, Steven P., Pol, Albert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446796/
https://www.ncbi.nlm.nih.gov/pubmed/26013497
http://dx.doi.org/10.1038/ncomms8176
_version_ 1782373496297357312
author Herms, Albert
Bosch, Marta
Reddy, Babu J.N.
Schieber, Nicole L.
Fajardo, Alba
Rupérez, Celia
Fernández-Vidal, Andrea
Ferguson, Charles
Rentero, Carles
Tebar, Francesc
Enrich, Carlos
Parton, Robert G.
Gross, Steven P.
Pol, Albert
author_facet Herms, Albert
Bosch, Marta
Reddy, Babu J.N.
Schieber, Nicole L.
Fajardo, Alba
Rupérez, Celia
Fernández-Vidal, Andrea
Ferguson, Charles
Rentero, Carles
Tebar, Francesc
Enrich, Carlos
Parton, Robert G.
Gross, Steven P.
Pol, Albert
author_sort Herms, Albert
collection PubMed
description Lipid droplets (LDs) are intracellular organelles that provide fatty acids (FAs) to cellular processes including synthesis of membranes and production of metabolic energy. While known to move bidirectionally along microtubules (MTs), the role of LD motion and whether it facilitates interaction with other organelles are unclear. Here we show that during nutrient starvation, LDs and mitochondria relocate on detyrosinated MT from the cell centre to adopt a dispersed distribution. In the cell periphery, LD–mitochondria interactions increase and LDs efficiently supply FAs for mitochondrial beta-oxidation. This cellular adaptation requires the activation of the energy sensor AMPK, which in response to starvation simultaneously increases LD motion, reorganizes the network of detyrosinated MTs and activates mitochondria. In conclusion, we describe the existence of a specialized cellular network connecting the cellular energetic status and MT dynamics to coordinate the functioning of LDs and mitochondria during nutrient scarcity.
format Online
Article
Text
id pubmed-4446796
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-44467962015-06-18 AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation Herms, Albert Bosch, Marta Reddy, Babu J.N. Schieber, Nicole L. Fajardo, Alba Rupérez, Celia Fernández-Vidal, Andrea Ferguson, Charles Rentero, Carles Tebar, Francesc Enrich, Carlos Parton, Robert G. Gross, Steven P. Pol, Albert Nat Commun Article Lipid droplets (LDs) are intracellular organelles that provide fatty acids (FAs) to cellular processes including synthesis of membranes and production of metabolic energy. While known to move bidirectionally along microtubules (MTs), the role of LD motion and whether it facilitates interaction with other organelles are unclear. Here we show that during nutrient starvation, LDs and mitochondria relocate on detyrosinated MT from the cell centre to adopt a dispersed distribution. In the cell periphery, LD–mitochondria interactions increase and LDs efficiently supply FAs for mitochondrial beta-oxidation. This cellular adaptation requires the activation of the energy sensor AMPK, which in response to starvation simultaneously increases LD motion, reorganizes the network of detyrosinated MTs and activates mitochondria. In conclusion, we describe the existence of a specialized cellular network connecting the cellular energetic status and MT dynamics to coordinate the functioning of LDs and mitochondria during nutrient scarcity. Nature Pub. Group 2015-05-27 /pmc/articles/PMC4446796/ /pubmed/26013497 http://dx.doi.org/10.1038/ncomms8176 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Herms, Albert
Bosch, Marta
Reddy, Babu J.N.
Schieber, Nicole L.
Fajardo, Alba
Rupérez, Celia
Fernández-Vidal, Andrea
Ferguson, Charles
Rentero, Carles
Tebar, Francesc
Enrich, Carlos
Parton, Robert G.
Gross, Steven P.
Pol, Albert
AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation
title AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation
title_full AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation
title_fullStr AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation
title_full_unstemmed AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation
title_short AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation
title_sort ampk activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446796/
https://www.ncbi.nlm.nih.gov/pubmed/26013497
http://dx.doi.org/10.1038/ncomms8176
work_keys_str_mv AT hermsalbert ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation
AT boschmarta ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation
AT reddybabujn ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation
AT schiebernicolel ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation
AT fajardoalba ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation
AT ruperezcelia ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation
AT fernandezvidalandrea ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation
AT fergusoncharles ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation
AT renterocarles ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation
AT tebarfrancesc ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation
AT enrichcarlos ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation
AT partonrobertg ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation
AT grossstevenp ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation
AT polalbert ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation