Cargando…
AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation
Lipid droplets (LDs) are intracellular organelles that provide fatty acids (FAs) to cellular processes including synthesis of membranes and production of metabolic energy. While known to move bidirectionally along microtubules (MTs), the role of LD motion and whether it facilitates interaction with...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446796/ https://www.ncbi.nlm.nih.gov/pubmed/26013497 http://dx.doi.org/10.1038/ncomms8176 |
_version_ | 1782373496297357312 |
---|---|
author | Herms, Albert Bosch, Marta Reddy, Babu J.N. Schieber, Nicole L. Fajardo, Alba Rupérez, Celia Fernández-Vidal, Andrea Ferguson, Charles Rentero, Carles Tebar, Francesc Enrich, Carlos Parton, Robert G. Gross, Steven P. Pol, Albert |
author_facet | Herms, Albert Bosch, Marta Reddy, Babu J.N. Schieber, Nicole L. Fajardo, Alba Rupérez, Celia Fernández-Vidal, Andrea Ferguson, Charles Rentero, Carles Tebar, Francesc Enrich, Carlos Parton, Robert G. Gross, Steven P. Pol, Albert |
author_sort | Herms, Albert |
collection | PubMed |
description | Lipid droplets (LDs) are intracellular organelles that provide fatty acids (FAs) to cellular processes including synthesis of membranes and production of metabolic energy. While known to move bidirectionally along microtubules (MTs), the role of LD motion and whether it facilitates interaction with other organelles are unclear. Here we show that during nutrient starvation, LDs and mitochondria relocate on detyrosinated MT from the cell centre to adopt a dispersed distribution. In the cell periphery, LD–mitochondria interactions increase and LDs efficiently supply FAs for mitochondrial beta-oxidation. This cellular adaptation requires the activation of the energy sensor AMPK, which in response to starvation simultaneously increases LD motion, reorganizes the network of detyrosinated MTs and activates mitochondria. In conclusion, we describe the existence of a specialized cellular network connecting the cellular energetic status and MT dynamics to coordinate the functioning of LDs and mitochondria during nutrient scarcity. |
format | Online Article Text |
id | pubmed-4446796 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-44467962015-06-18 AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation Herms, Albert Bosch, Marta Reddy, Babu J.N. Schieber, Nicole L. Fajardo, Alba Rupérez, Celia Fernández-Vidal, Andrea Ferguson, Charles Rentero, Carles Tebar, Francesc Enrich, Carlos Parton, Robert G. Gross, Steven P. Pol, Albert Nat Commun Article Lipid droplets (LDs) are intracellular organelles that provide fatty acids (FAs) to cellular processes including synthesis of membranes and production of metabolic energy. While known to move bidirectionally along microtubules (MTs), the role of LD motion and whether it facilitates interaction with other organelles are unclear. Here we show that during nutrient starvation, LDs and mitochondria relocate on detyrosinated MT from the cell centre to adopt a dispersed distribution. In the cell periphery, LD–mitochondria interactions increase and LDs efficiently supply FAs for mitochondrial beta-oxidation. This cellular adaptation requires the activation of the energy sensor AMPK, which in response to starvation simultaneously increases LD motion, reorganizes the network of detyrosinated MTs and activates mitochondria. In conclusion, we describe the existence of a specialized cellular network connecting the cellular energetic status and MT dynamics to coordinate the functioning of LDs and mitochondria during nutrient scarcity. Nature Pub. Group 2015-05-27 /pmc/articles/PMC4446796/ /pubmed/26013497 http://dx.doi.org/10.1038/ncomms8176 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Herms, Albert Bosch, Marta Reddy, Babu J.N. Schieber, Nicole L. Fajardo, Alba Rupérez, Celia Fernández-Vidal, Andrea Ferguson, Charles Rentero, Carles Tebar, Francesc Enrich, Carlos Parton, Robert G. Gross, Steven P. Pol, Albert AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation |
title | AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation |
title_full | AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation |
title_fullStr | AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation |
title_full_unstemmed | AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation |
title_short | AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation |
title_sort | ampk activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446796/ https://www.ncbi.nlm.nih.gov/pubmed/26013497 http://dx.doi.org/10.1038/ncomms8176 |
work_keys_str_mv | AT hermsalbert ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation AT boschmarta ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation AT reddybabujn ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation AT schiebernicolel ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation AT fajardoalba ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation AT ruperezcelia ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation AT fernandezvidalandrea ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation AT fergusoncharles ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation AT renterocarles ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation AT tebarfrancesc ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation AT enrichcarlos ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation AT partonrobertg ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation AT grossstevenp ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation AT polalbert ampkactivationpromoteslipiddropletdispersionondetyrosinatedmicrotubulestoincreasemitochondrialfattyacidoxidation |