Cargando…

Inhibition of RORγt activity and Th17 differentiation by a set of novel compounds

BACKGROUND: Retinoic acid receptor-related orphan receptor gamma t (RORγt) is the master regulator of Th17 cell differentiation, which plays a critical role in the pathology of several autoimmune diseases. By directing Th17 cells function, RORγt could be a potential target for drug development for T...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Qingfeng, Zhao, Mei, Bai, Chuan, Yu, Bolan, Huang, Zhaofeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446823/
https://www.ncbi.nlm.nih.gov/pubmed/26021566
http://dx.doi.org/10.1186/s12865-015-0097-9
Descripción
Sumario:BACKGROUND: Retinoic acid receptor-related orphan receptor gamma t (RORγt) is the master regulator of Th17 cell differentiation, which plays a critical role in the pathology of several autoimmune diseases. By directing Th17 cells function, RORγt could be a potential target for drug development for Th17 related autoimmune disease. METHODS: A Jurkat cell-based reporter assay system was used for screening RORγt inhibitors from a drug-like chemical library, following with mouse Th17 cells differentiation study to identify the effect of targeted compounds in primary T cells. 293T cell-based reporter assay was conducted to determine the cell specificity, and MTT assay was performed to determine the cell toxicity of those compounds. RESULTS: In this study, we identified four lead compounds that suppressed RORγt activity, Th17 differentiation and IL-17A secretion. These candidates displayed inhibition ability on RORγt activity in T cell derived Jurkat cell, but not in 293 T cell, which indicated the restricted effects of these compounds to other cells or tissues. Futhermore, our results demonstrated that these candidates exhibited more robust inhibitory on IL-17 F transcription expression than IL-17A, which is different from one reported compound, SR1001, that mainly suppressed IL-17A, rather than IL-17 F production. CONCLUSIONS: Our study discovered four novel compounds that inhibited RORγt activity and Th17 function, which indicates their potential in therapeutic application of Th17 related autoimmune disorders.