Cargando…
Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins
RNA binding proteins of the conserved CUGBP1, Elav-like factor (CELF) family contribute to heart and skeletal muscle development and are implicated in myotonic dystrophy (DM). To understand their genome-wide functions, we analyzed the transcriptome dynamics following induction of CELF1 or CELF2 in a...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448682/ https://www.ncbi.nlm.nih.gov/pubmed/25883322 http://dx.doi.org/10.1101/gr.184390.114 |
_version_ | 1782373747352666112 |
---|---|
author | Wang, Eric T. Ward, Amanda J. Cherone, Jennifer M. Giudice, Jimena Wang, Thomas T. Treacy, Daniel J. Lambert, Nicole J. Freese, Peter Saxena, Tanvi Cooper, Thomas A. Burge, Christopher B. |
author_facet | Wang, Eric T. Ward, Amanda J. Cherone, Jennifer M. Giudice, Jimena Wang, Thomas T. Treacy, Daniel J. Lambert, Nicole J. Freese, Peter Saxena, Tanvi Cooper, Thomas A. Burge, Christopher B. |
author_sort | Wang, Eric T. |
collection | PubMed |
description | RNA binding proteins of the conserved CUGBP1, Elav-like factor (CELF) family contribute to heart and skeletal muscle development and are implicated in myotonic dystrophy (DM). To understand their genome-wide functions, we analyzed the transcriptome dynamics following induction of CELF1 or CELF2 in adult mouse heart and of CELF1 in muscle by RNA-seq, complemented by crosslinking/immunoprecipitation-sequencing (CLIP-seq) analysis of mouse cells and tissues to distinguish direct from indirect regulatory targets. We identified hundreds of mRNAs bound in their 3′ UTRs by both CELF1 and the developmentally induced MBNL1 protein, a threefold greater overlap in target messages than expected, including messages involved in development and cell differentiation. The extent of 3′ UTR binding by CELF1 and MBNL1 predicted the degree of mRNA repression or stabilization, respectively, following CELF1 induction. However, CELF1's RNA binding specificity in vitro was not detectably altered by coincubation with recombinant MBNL1. These findings support a model in which CELF and MBNL proteins bind independently to mRNAs but functionally compete to specify down-regulation or localization/stabilization, respectively, of hundreds of mRNA targets. Expression of many alternative 3′ UTR isoforms was altered following CELF1 induction, with 3′ UTR binding associated with down-regulation of isoforms and genes. The splicing of hundreds of alternative exons was oppositely regulated by these proteins, confirming an additional layer of regulatory antagonism previously observed in a handful of cases. The regulatory relationships between CELFs and MBNLs in control of both mRNA abundance and splicing appear to have evolved to enhance developmental transitions in major classes of heart and muscle genes. |
format | Online Article Text |
id | pubmed-4448682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-44486822015-06-08 Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins Wang, Eric T. Ward, Amanda J. Cherone, Jennifer M. Giudice, Jimena Wang, Thomas T. Treacy, Daniel J. Lambert, Nicole J. Freese, Peter Saxena, Tanvi Cooper, Thomas A. Burge, Christopher B. Genome Res Research RNA binding proteins of the conserved CUGBP1, Elav-like factor (CELF) family contribute to heart and skeletal muscle development and are implicated in myotonic dystrophy (DM). To understand their genome-wide functions, we analyzed the transcriptome dynamics following induction of CELF1 or CELF2 in adult mouse heart and of CELF1 in muscle by RNA-seq, complemented by crosslinking/immunoprecipitation-sequencing (CLIP-seq) analysis of mouse cells and tissues to distinguish direct from indirect regulatory targets. We identified hundreds of mRNAs bound in their 3′ UTRs by both CELF1 and the developmentally induced MBNL1 protein, a threefold greater overlap in target messages than expected, including messages involved in development and cell differentiation. The extent of 3′ UTR binding by CELF1 and MBNL1 predicted the degree of mRNA repression or stabilization, respectively, following CELF1 induction. However, CELF1's RNA binding specificity in vitro was not detectably altered by coincubation with recombinant MBNL1. These findings support a model in which CELF and MBNL proteins bind independently to mRNAs but functionally compete to specify down-regulation or localization/stabilization, respectively, of hundreds of mRNA targets. Expression of many alternative 3′ UTR isoforms was altered following CELF1 induction, with 3′ UTR binding associated with down-regulation of isoforms and genes. The splicing of hundreds of alternative exons was oppositely regulated by these proteins, confirming an additional layer of regulatory antagonism previously observed in a handful of cases. The regulatory relationships between CELFs and MBNLs in control of both mRNA abundance and splicing appear to have evolved to enhance developmental transitions in major classes of heart and muscle genes. Cold Spring Harbor Laboratory Press 2015-06 /pmc/articles/PMC4448682/ /pubmed/25883322 http://dx.doi.org/10.1101/gr.184390.114 Text en © 2015 Wang et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by/4.0/ This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Research Wang, Eric T. Ward, Amanda J. Cherone, Jennifer M. Giudice, Jimena Wang, Thomas T. Treacy, Daniel J. Lambert, Nicole J. Freese, Peter Saxena, Tanvi Cooper, Thomas A. Burge, Christopher B. Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins |
title | Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins |
title_full | Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins |
title_fullStr | Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins |
title_full_unstemmed | Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins |
title_short | Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins |
title_sort | antagonistic regulation of mrna expression and splicing by celf and mbnl proteins |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448682/ https://www.ncbi.nlm.nih.gov/pubmed/25883322 http://dx.doi.org/10.1101/gr.184390.114 |
work_keys_str_mv | AT wangerict antagonisticregulationofmrnaexpressionandsplicingbycelfandmbnlproteins AT wardamandaj antagonisticregulationofmrnaexpressionandsplicingbycelfandmbnlproteins AT cheronejenniferm antagonisticregulationofmrnaexpressionandsplicingbycelfandmbnlproteins AT giudicejimena antagonisticregulationofmrnaexpressionandsplicingbycelfandmbnlproteins AT wangthomast antagonisticregulationofmrnaexpressionandsplicingbycelfandmbnlproteins AT treacydanielj antagonisticregulationofmrnaexpressionandsplicingbycelfandmbnlproteins AT lambertnicolej antagonisticregulationofmrnaexpressionandsplicingbycelfandmbnlproteins AT freesepeter antagonisticregulationofmrnaexpressionandsplicingbycelfandmbnlproteins AT saxenatanvi antagonisticregulationofmrnaexpressionandsplicingbycelfandmbnlproteins AT cooperthomasa antagonisticregulationofmrnaexpressionandsplicingbycelfandmbnlproteins AT burgechristopherb antagonisticregulationofmrnaexpressionandsplicingbycelfandmbnlproteins |