Cargando…

Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate

In this study, novel p-type scallop-shaped fin field-effect transistors (S-FinFETs) are fabricated using an all-last high-k/metal gate (HKMG) process on bulk-silicon (Si) substrates for the first time. In combination with the structure advantage of conventional Si nanowires, the proposed S-FinFETs p...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Weijia, Yin, Huaxiang, Ma, Xiaolong, Hong, Peizhen, Xu, Miao, Meng, Lingkuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456591/
https://www.ncbi.nlm.nih.gov/pubmed/26055484
http://dx.doi.org/10.1186/s11671-015-0958-4
_version_ 1782374854041796608
author Xu, Weijia
Yin, Huaxiang
Ma, Xiaolong
Hong, Peizhen
Xu, Miao
Meng, Lingkuan
author_facet Xu, Weijia
Yin, Huaxiang
Ma, Xiaolong
Hong, Peizhen
Xu, Miao
Meng, Lingkuan
author_sort Xu, Weijia
collection PubMed
description In this study, novel p-type scallop-shaped fin field-effect transistors (S-FinFETs) are fabricated using an all-last high-k/metal gate (HKMG) process on bulk-silicon (Si) substrates for the first time. In combination with the structure advantage of conventional Si nanowires, the proposed S-FinFETs provide better electrostatic integrity in the channels than normal bulk-Si FinFETs or tri-gate devices with rectangular or trapezoidal fins. It is due to formation of quasi-surrounding gate electrodes on scalloping fins by a special Si etch process. The entire integration flow of the S-FinFETs is fully compatible with the mainstream all-last HKMG FinFET process, except for a modified fin etch process. The drain-induced barrier lowering and subthreshold swing of the fabricated p-type S-FinFETs with a 14-nm physical gate length are 62 mV/V and 75 mV/dec, respectively, which are much better than those of normal FinFETs with a similar process. With an improved short-channel-effect immunity in the channels due to structure modification, the novel structure provides one of possibilities to extend the FinFET scalability to sub-10-nm nodes with little additional process cost.
format Online
Article
Text
id pubmed-4456591
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-44565912015-06-11 Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate Xu, Weijia Yin, Huaxiang Ma, Xiaolong Hong, Peizhen Xu, Miao Meng, Lingkuan Nanoscale Res Lett Nano Express In this study, novel p-type scallop-shaped fin field-effect transistors (S-FinFETs) are fabricated using an all-last high-k/metal gate (HKMG) process on bulk-silicon (Si) substrates for the first time. In combination with the structure advantage of conventional Si nanowires, the proposed S-FinFETs provide better electrostatic integrity in the channels than normal bulk-Si FinFETs or tri-gate devices with rectangular or trapezoidal fins. It is due to formation of quasi-surrounding gate electrodes on scalloping fins by a special Si etch process. The entire integration flow of the S-FinFETs is fully compatible with the mainstream all-last HKMG FinFET process, except for a modified fin etch process. The drain-induced barrier lowering and subthreshold swing of the fabricated p-type S-FinFETs with a 14-nm physical gate length are 62 mV/V and 75 mV/dec, respectively, which are much better than those of normal FinFETs with a similar process. With an improved short-channel-effect immunity in the channels due to structure modification, the novel structure provides one of possibilities to extend the FinFET scalability to sub-10-nm nodes with little additional process cost. Springer US 2015-06-02 /pmc/articles/PMC4456591/ /pubmed/26055484 http://dx.doi.org/10.1186/s11671-015-0958-4 Text en © Xu et al. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
spellingShingle Nano Express
Xu, Weijia
Yin, Huaxiang
Ma, Xiaolong
Hong, Peizhen
Xu, Miao
Meng, Lingkuan
Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate
title Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate
title_full Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate
title_fullStr Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate
title_full_unstemmed Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate
title_short Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate
title_sort novel 14-nm scallop-shaped finfets (s-finfets) on bulk-si substrate
topic Nano Express
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456591/
https://www.ncbi.nlm.nih.gov/pubmed/26055484
http://dx.doi.org/10.1186/s11671-015-0958-4
work_keys_str_mv AT xuweijia novel14nmscallopshapedfinfetssfinfetsonbulksisubstrate
AT yinhuaxiang novel14nmscallopshapedfinfetssfinfetsonbulksisubstrate
AT maxiaolong novel14nmscallopshapedfinfetssfinfetsonbulksisubstrate
AT hongpeizhen novel14nmscallopshapedfinfetssfinfetsonbulksisubstrate
AT xumiao novel14nmscallopshapedfinfetssfinfetsonbulksisubstrate
AT menglingkuan novel14nmscallopshapedfinfetssfinfetsonbulksisubstrate