Cargando…
Bootstrap Restricted Likelihood Ratio Test for the Detection of Rare Variants
In this paper the detection of rare variants association with continuous phenotypes of interest is investigated via the likelihood-ratio based variance component test under the framework of linear mixed models. The hypothesis testing is challenging and nonstandard, since under the null the variance...
Autores principales: | Zeng, Ping, Wang, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Science Publishers
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460223/ https://www.ncbi.nlm.nih.gov/pubmed/26069459 http://dx.doi.org/10.2174/1389202916666150304234203 |
Ejemplares similares
-
Rare Variants Detection with Kernel Machine Learning Based on Likelihood Ratio Test
por: Zeng, Ping, et al.
Publicado: (2014) -
Minimum Divergence Estimators, Maximum Likelihood and the Generalized Bootstrap
por: Broniatowski, Michel
Publicado: (2021) -
The Geometry of Generalized Likelihood Ratio Test
por: Cheng, Yongqiang, et al.
Publicado: (2022) -
Obtaining Reliable Likelihood Ratio Tests from Simulated Likelihood Functions
por: Andersen, Laura Mørch
Publicado: (2014) -
Association Studies with Imputed Variants Using Expectation-Maximization Likelihood-Ratio Tests
por: Huang, Kuan-Chieh, et al.
Publicado: (2014)