Cargando…

Fluorescence imaging for a noninvasive in vivo toxicity-test using a transgenic silkworm expressing green fluorescent protein

In drug development, the toxicity of candidate chemicals must be carefully examined in an animal model. Here we developed a live imaging technique using silkworms for a noninvasive toxicity test applicable for drug screening. Injection of carbon tetrachloride, a tissue-injuring chemical, into transg...

Descripción completa

Detalles Bibliográficos
Autores principales: Inagaki, Yoshinori, Matsumoto, Yasuhiko, Ishii, Masaki, Uchino, Keiro, Sezutsu, Hideki, Sekimizu, Kazuhisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4462092/
https://www.ncbi.nlm.nih.gov/pubmed/26061948
http://dx.doi.org/10.1038/srep11180
Descripción
Sumario:In drug development, the toxicity of candidate chemicals must be carefully examined in an animal model. Here we developed a live imaging technique using silkworms for a noninvasive toxicity test applicable for drug screening. Injection of carbon tetrachloride, a tissue-injuring chemical, into transgenic silkworms expressing green fluorescent protein (GFP) induced leakage of GFP from the tissues into the hemolymph. The leakage of GFP was suppressed by pre-administration of either cimetidine, a cytochrome P450 inhibitor, or N-acetyl cysteine, a free-radical scavenger. The transgenic silkworm was made transparent by feeding a diet containing chemicals that inhibit uric acid deposition in the epithelial cells. In the transparent silkworms, GFP fluorescence in the fat body could be observed from outside the body. Injection of salicylic acid or iron sulfate, tissue-injuring chemicals, into the transparent silkworms decreased the fluorescence intensity of the GFP in the fat body. These findings suggest that the transparent GFP-expressing silkworm model is useful for evaluating the toxicity of chemicals that induce tissue injury.