Cargando…

Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing

Recent use of the CRISPR/Cas9 system has dramatically reduced the time required to produce mutant mice, but the involvement of a time-consuming microinjection step still hampers its application for high-throughput genetic analysis. Here we developed a simple, highly efficient, and large-scale genome...

Descripción completa

Detalles Bibliográficos
Autores principales: Hashimoto, Masakazu, Takemoto, Tatsuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463957/
https://www.ncbi.nlm.nih.gov/pubmed/26066060
http://dx.doi.org/10.1038/srep11315
Descripción
Sumario:Recent use of the CRISPR/Cas9 system has dramatically reduced the time required to produce mutant mice, but the involvement of a time-consuming microinjection step still hampers its application for high-throughput genetic analysis. Here we developed a simple, highly efficient, and large-scale genome editing method, in which the RNAs for the CRISPR/Cas9 system are electroporated into zygotes rather than microinjected. We used this method to perform single-stranded oligodeoxynucleotide (ssODN)-mediated knock-in in mouse embryos. This method facilitates large-scale genetic analysis in the mouse.