Cargando…
Catalytic 1,4-Rhodium(III) Migration Enables 1,3-Enynes to Function as One-Carbon Oxidative Annulation Partners in C–H Functionalizations**
1,3-Enynes containing allylic hydrogens cis to the alkyne are shown to act as one-carbon partners, rather than two-carbon partners, in various rhodium-catalyzed oxidative annulations. The mechanism of these unexpected transformations is proposed to occur through double C–H activation, involving a hi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
WILEY-VCH Verlag
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464529/ https://www.ncbi.nlm.nih.gov/pubmed/25048465 http://dx.doi.org/10.1002/anie.201406072 |
Sumario: | 1,3-Enynes containing allylic hydrogens cis to the alkyne are shown to act as one-carbon partners, rather than two-carbon partners, in various rhodium-catalyzed oxidative annulations. The mechanism of these unexpected transformations is proposed to occur through double C–H activation, involving a hitherto rare example of the 1,4-migration of a Rh(III) species. This phenomenon is general across a variety of substrates, and provides a diverse range of heterocyclic products. |
---|