Cargando…

Real-time tRNA transit on single translating ribosomes at codon resolution

Translation by the ribosome occurs by a complex mechanism involving the coordinated interaction of multiple nucleic acid and protein ligands. Here we have used zero-mode waveguides (ZMWs) and sophisticated detection instrumentation to allow real-time observation of translation at physiologically-rel...

Descripción completa

Detalles Bibliográficos
Autores principales: Uemura, Sotaro, Aitken, Colin Echeverría, Korlach, Jonas, Flusberg, Benjamin A., Turner, Stephen W., Puglisi, Joseph D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466108/
https://www.ncbi.nlm.nih.gov/pubmed/20393556
http://dx.doi.org/10.1038/nature08925
Descripción
Sumario:Translation by the ribosome occurs by a complex mechanism involving the coordinated interaction of multiple nucleic acid and protein ligands. Here we have used zero-mode waveguides (ZMWs) and sophisticated detection instrumentation to allow real-time observation of translation at physiologically-relevant (μM) ligand concentrations. Translation at each codon is monitored by stable binding of tRNAs – labeled with distinct fluorophores – to translating ribosomes, allowing direct detection of the identity of tRNA molecules bound to the ribosome, and therefore, the underlying mRNA sequence. We observe the transit of tRNAs on single translating ribosomes and have determined the number of tRNA molecules simultaneously bound to the ribosome, at each codon of an mRNA. Our results show that ribosomes are only briefly occupied by two tRNAs and that release of deacylated tRNA from the E site is uncoupled from binding of A-site tRNA and occurs rapidly after translocation. The methods outlined here have broad application to the study of mRNA sequences, and the mechanism and regulation of translation.