Cargando…
iPSC-Based Models to Unravel Key Pathogenetic Processes Underlying Motor Neuron Disease Development
Motor neuron diseases (MNDs) are neuromuscular disorders affecting rather exclusively upper motor neurons (UMNs) and/or lower motor neurons (LMNs). The clinical phenotype is characterized by muscular weakness and atrophy leading to paralysis and almost invariably death due to respiratory failure. Ad...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4470174/ https://www.ncbi.nlm.nih.gov/pubmed/26237595 http://dx.doi.org/10.3390/jcm3041124 |
_version_ | 1782376722717474816 |
---|---|
author | Faravelli, Irene Frattini, Emanuele Ramirez, Agnese Stuppia, Giulia Nizzardo, Monica Corti, Stefania |
author_facet | Faravelli, Irene Frattini, Emanuele Ramirez, Agnese Stuppia, Giulia Nizzardo, Monica Corti, Stefania |
author_sort | Faravelli, Irene |
collection | PubMed |
description | Motor neuron diseases (MNDs) are neuromuscular disorders affecting rather exclusively upper motor neurons (UMNs) and/or lower motor neurons (LMNs). The clinical phenotype is characterized by muscular weakness and atrophy leading to paralysis and almost invariably death due to respiratory failure. Adult MNDs include sporadic and familial amyotrophic lateral sclerosis (sALS-fALS), while the most common infantile MND is represented by spinal muscular atrophy (SMA). No effective treatment is ccurrently available for MNDs, as for the vast majority of neurodegenerative disorders, and cures are limited to supportive care and symptom relief. The lack of a deep understanding of MND pathogenesis accounts for the difficulties in finding a cure, together with the scarcity of reliable in vitro models. Recent progresses in stem cell field, in particular in the generation of induced Pluripotent Stem Cells (iPSCs) has made possible for the first time obtaining substantial amounts of human cells to recapitulate in vitro some of the key pathogenetic processes underlying MNDs. In the present review, recently published studies involving the use of iPSCs to unravel aspects of ALS and SMA pathogenesis are discussed with an overview of their implications in the process of finding a cure for these still orphan disorders. |
format | Online Article Text |
id | pubmed-4470174 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-44701742015-07-28 iPSC-Based Models to Unravel Key Pathogenetic Processes Underlying Motor Neuron Disease Development Faravelli, Irene Frattini, Emanuele Ramirez, Agnese Stuppia, Giulia Nizzardo, Monica Corti, Stefania J Clin Med Review Motor neuron diseases (MNDs) are neuromuscular disorders affecting rather exclusively upper motor neurons (UMNs) and/or lower motor neurons (LMNs). The clinical phenotype is characterized by muscular weakness and atrophy leading to paralysis and almost invariably death due to respiratory failure. Adult MNDs include sporadic and familial amyotrophic lateral sclerosis (sALS-fALS), while the most common infantile MND is represented by spinal muscular atrophy (SMA). No effective treatment is ccurrently available for MNDs, as for the vast majority of neurodegenerative disorders, and cures are limited to supportive care and symptom relief. The lack of a deep understanding of MND pathogenesis accounts for the difficulties in finding a cure, together with the scarcity of reliable in vitro models. Recent progresses in stem cell field, in particular in the generation of induced Pluripotent Stem Cells (iPSCs) has made possible for the first time obtaining substantial amounts of human cells to recapitulate in vitro some of the key pathogenetic processes underlying MNDs. In the present review, recently published studies involving the use of iPSCs to unravel aspects of ALS and SMA pathogenesis are discussed with an overview of their implications in the process of finding a cure for these still orphan disorders. MDPI 2014-10-17 /pmc/articles/PMC4470174/ /pubmed/26237595 http://dx.doi.org/10.3390/jcm3041124 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Faravelli, Irene Frattini, Emanuele Ramirez, Agnese Stuppia, Giulia Nizzardo, Monica Corti, Stefania iPSC-Based Models to Unravel Key Pathogenetic Processes Underlying Motor Neuron Disease Development |
title | iPSC-Based Models to Unravel Key Pathogenetic Processes Underlying Motor Neuron Disease Development |
title_full | iPSC-Based Models to Unravel Key Pathogenetic Processes Underlying Motor Neuron Disease Development |
title_fullStr | iPSC-Based Models to Unravel Key Pathogenetic Processes Underlying Motor Neuron Disease Development |
title_full_unstemmed | iPSC-Based Models to Unravel Key Pathogenetic Processes Underlying Motor Neuron Disease Development |
title_short | iPSC-Based Models to Unravel Key Pathogenetic Processes Underlying Motor Neuron Disease Development |
title_sort | ipsc-based models to unravel key pathogenetic processes underlying motor neuron disease development |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4470174/ https://www.ncbi.nlm.nih.gov/pubmed/26237595 http://dx.doi.org/10.3390/jcm3041124 |
work_keys_str_mv | AT faravelliirene ipscbasedmodelstounravelkeypathogeneticprocessesunderlyingmotorneurondiseasedevelopment AT frattiniemanuele ipscbasedmodelstounravelkeypathogeneticprocessesunderlyingmotorneurondiseasedevelopment AT ramirezagnese ipscbasedmodelstounravelkeypathogeneticprocessesunderlyingmotorneurondiseasedevelopment AT stuppiagiulia ipscbasedmodelstounravelkeypathogeneticprocessesunderlyingmotorneurondiseasedevelopment AT nizzardomonica ipscbasedmodelstounravelkeypathogeneticprocessesunderlyingmotorneurondiseasedevelopment AT cortistefania ipscbasedmodelstounravelkeypathogeneticprocessesunderlyingmotorneurondiseasedevelopment |