Cargando…

Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in Pseudomonas aeruginosa

Elongation factor P (EF-P) is a ubiquitous bacterial protein that is required for the synthesis of poly-proline motifs during translation. In Escherichia coli and Salmonella enterica, the posttranslational β-lysylation of Lys34 by the PoxA protein is critical for EF-P activity. PoxA is absent from m...

Descripción completa

Detalles Bibliográficos
Autores principales: Rajkovic, Andrei, Erickson, Sarah, Witzky, Anne, Branson, Owen E., Seo, Jin, Gafken, Philip R., Frietas, Michael A., Whitelegge, Julian P., Faull, Kym F., Navarre, William, Darwin, Andrew J., Ibba, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Microbiology 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471567/
https://www.ncbi.nlm.nih.gov/pubmed/26060278
http://dx.doi.org/10.1128/mBio.00823-15
_version_ 1782376936626978816
author Rajkovic, Andrei
Erickson, Sarah
Witzky, Anne
Branson, Owen E.
Seo, Jin
Gafken, Philip R.
Frietas, Michael A.
Whitelegge, Julian P.
Faull, Kym F.
Navarre, William
Darwin, Andrew J.
Ibba, Michael
author_facet Rajkovic, Andrei
Erickson, Sarah
Witzky, Anne
Branson, Owen E.
Seo, Jin
Gafken, Philip R.
Frietas, Michael A.
Whitelegge, Julian P.
Faull, Kym F.
Navarre, William
Darwin, Andrew J.
Ibba, Michael
author_sort Rajkovic, Andrei
collection PubMed
description Elongation factor P (EF-P) is a ubiquitous bacterial protein that is required for the synthesis of poly-proline motifs during translation. In Escherichia coli and Salmonella enterica, the posttranslational β-lysylation of Lys34 by the PoxA protein is critical for EF-P activity. PoxA is absent from many bacterial species such as Pseudomonas aeruginosa, prompting a search for alternative EF-P posttranslation modification pathways. Structural analyses of P. aeruginosa EF-P revealed the attachment of a single cyclic rhamnose moiety to an Arg residue at a position equivalent to that at which β-Lys is attached to E. coli EF-P. Analysis of the genomes of organisms that both lack poxA and encode an Arg32-containing EF-P revealed a highly conserved glycosyltransferase (EarP) encoded at a position adjacent to efp. EF-P proteins isolated from P. aeruginosa ΔearP, or from a ΔrmlC::acc1 strain deficient in dTDP-l-rhamnose biosynthesis, were unmodified. In vitro assays confirmed the ability of EarP to use dTDP-l-rhamnose as a substrate for the posttranslational glycosylation of EF-P. The role of rhamnosylated EF-P in translational control was investigated in P. aeruginosa using a Pro(4)-green fluorescent protein (Pro(4)GFP) in vivo reporter assay, and the fluorescence was significantly reduced in Δefp, ΔearP, and ΔrmlC::acc1 strains. ΔrmlC::acc1, ΔearP, and Δefp strains also displayed significant increases in their sensitivities to a range of antibiotics, including ertapenem, polymyxin B, cefotaxim, and piperacillin. Taken together, our findings indicate that posttranslational rhamnosylation of EF-P plays a key role in P. aeruginosa gene expression and survival.
format Online
Article
Text
id pubmed-4471567
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher American Society of Microbiology
record_format MEDLINE/PubMed
spelling pubmed-44715672015-06-19 Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in Pseudomonas aeruginosa Rajkovic, Andrei Erickson, Sarah Witzky, Anne Branson, Owen E. Seo, Jin Gafken, Philip R. Frietas, Michael A. Whitelegge, Julian P. Faull, Kym F. Navarre, William Darwin, Andrew J. Ibba, Michael mBio Research Article Elongation factor P (EF-P) is a ubiquitous bacterial protein that is required for the synthesis of poly-proline motifs during translation. In Escherichia coli and Salmonella enterica, the posttranslational β-lysylation of Lys34 by the PoxA protein is critical for EF-P activity. PoxA is absent from many bacterial species such as Pseudomonas aeruginosa, prompting a search for alternative EF-P posttranslation modification pathways. Structural analyses of P. aeruginosa EF-P revealed the attachment of a single cyclic rhamnose moiety to an Arg residue at a position equivalent to that at which β-Lys is attached to E. coli EF-P. Analysis of the genomes of organisms that both lack poxA and encode an Arg32-containing EF-P revealed a highly conserved glycosyltransferase (EarP) encoded at a position adjacent to efp. EF-P proteins isolated from P. aeruginosa ΔearP, or from a ΔrmlC::acc1 strain deficient in dTDP-l-rhamnose biosynthesis, were unmodified. In vitro assays confirmed the ability of EarP to use dTDP-l-rhamnose as a substrate for the posttranslational glycosylation of EF-P. The role of rhamnosylated EF-P in translational control was investigated in P. aeruginosa using a Pro(4)-green fluorescent protein (Pro(4)GFP) in vivo reporter assay, and the fluorescence was significantly reduced in Δefp, ΔearP, and ΔrmlC::acc1 strains. ΔrmlC::acc1, ΔearP, and Δefp strains also displayed significant increases in their sensitivities to a range of antibiotics, including ertapenem, polymyxin B, cefotaxim, and piperacillin. Taken together, our findings indicate that posttranslational rhamnosylation of EF-P plays a key role in P. aeruginosa gene expression and survival. American Society of Microbiology 2015-06-09 /pmc/articles/PMC4471567/ /pubmed/26060278 http://dx.doi.org/10.1128/mBio.00823-15 Text en Copyright © 2015 Rajkovic et al. http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0/) , which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Rajkovic, Andrei
Erickson, Sarah
Witzky, Anne
Branson, Owen E.
Seo, Jin
Gafken, Philip R.
Frietas, Michael A.
Whitelegge, Julian P.
Faull, Kym F.
Navarre, William
Darwin, Andrew J.
Ibba, Michael
Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in Pseudomonas aeruginosa
title Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in Pseudomonas aeruginosa
title_full Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in Pseudomonas aeruginosa
title_fullStr Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in Pseudomonas aeruginosa
title_full_unstemmed Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in Pseudomonas aeruginosa
title_short Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in Pseudomonas aeruginosa
title_sort cyclic rhamnosylated elongation factor p establishes antibiotic resistance in pseudomonas aeruginosa
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471567/
https://www.ncbi.nlm.nih.gov/pubmed/26060278
http://dx.doi.org/10.1128/mBio.00823-15
work_keys_str_mv AT rajkovicandrei cyclicrhamnosylatedelongationfactorpestablishesantibioticresistanceinpseudomonasaeruginosa
AT ericksonsarah cyclicrhamnosylatedelongationfactorpestablishesantibioticresistanceinpseudomonasaeruginosa
AT witzkyanne cyclicrhamnosylatedelongationfactorpestablishesantibioticresistanceinpseudomonasaeruginosa
AT bransonowene cyclicrhamnosylatedelongationfactorpestablishesantibioticresistanceinpseudomonasaeruginosa
AT seojin cyclicrhamnosylatedelongationfactorpestablishesantibioticresistanceinpseudomonasaeruginosa
AT gafkenphilipr cyclicrhamnosylatedelongationfactorpestablishesantibioticresistanceinpseudomonasaeruginosa
AT frietasmichaela cyclicrhamnosylatedelongationfactorpestablishesantibioticresistanceinpseudomonasaeruginosa
AT whiteleggejulianp cyclicrhamnosylatedelongationfactorpestablishesantibioticresistanceinpseudomonasaeruginosa
AT faullkymf cyclicrhamnosylatedelongationfactorpestablishesantibioticresistanceinpseudomonasaeruginosa
AT navarrewilliam cyclicrhamnosylatedelongationfactorpestablishesantibioticresistanceinpseudomonasaeruginosa
AT darwinandrewj cyclicrhamnosylatedelongationfactorpestablishesantibioticresistanceinpseudomonasaeruginosa
AT ibbamichael cyclicrhamnosylatedelongationfactorpestablishesantibioticresistanceinpseudomonasaeruginosa