Cargando…
Listeriolysin O Affects the Permeability of Caco-2 Monolayer in a Pore-Dependent and Ca(2+)-Independent Manner
Listeria monocytogenes is a food and soil-borne pathogen that secretes a pore-forming toxin listeriolysin O (LLO) as its major virulence factor. We tested the effects of LLO on an intestinal epithelial cell line Caco-2 and compared them to an unrelated pore-forming toxin equinatoxin II (EqtII). Resu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4472510/ https://www.ncbi.nlm.nih.gov/pubmed/26087154 http://dx.doi.org/10.1371/journal.pone.0130471 |
Sumario: | Listeria monocytogenes is a food and soil-borne pathogen that secretes a pore-forming toxin listeriolysin O (LLO) as its major virulence factor. We tested the effects of LLO on an intestinal epithelial cell line Caco-2 and compared them to an unrelated pore-forming toxin equinatoxin II (EqtII). Results showed that apical application of both toxins causes a significant drop in transepithelial electrical resistance (TEER), with higher LLO concentrations or prolonged exposure time needed to achieve the same magnitude of response than with EqtII. The drop in TEER was due to pore formation and coincided with rearrangement of claudin-1 within tight junctions and associated actin cytoskeleton; however, no significant increase in permeability to fluorescein or 3 kDa FITC-dextran was observed. Influx of calcium after pore formation affected the magnitude of the drop in TEER. Both toxins exhibit similar effects on epithelium morphology and physiology. Importantly, LLO action upon the membrane is much slower and results in compromised epithelium on a longer time scale at lower concentrations than EqtII. This could favor listerial invasion in hosts resistant to E-cadherin related infection. |
---|