Cargando…

A weighted and integrated drug-target interactome: drug repurposing for schizophrenia as a use case

BACKGROUND: Computational pharmacology can uniquely address some issues in the process of drug development by providing a macroscopic view and a deeper understanding of drug action. Specifically, network-assisted approach is promising for the inference of drug repurposing. However, the drug-target a...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Liang-Chin, Soysal, Ergin, Zheng, W Jim, Zhao, Zhongming, Xu, Hua, Sun, Jingchun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474536/
https://www.ncbi.nlm.nih.gov/pubmed/26100720
http://dx.doi.org/10.1186/1752-0509-9-S4-S2
Descripción
Sumario:BACKGROUND: Computational pharmacology can uniquely address some issues in the process of drug development by providing a macroscopic view and a deeper understanding of drug action. Specifically, network-assisted approach is promising for the inference of drug repurposing. However, the drug-target associations coming from different sources and various assays have much noise, leading to an inflation of the inference errors. To reduce the inference errors, it is necessary and critical to create a comprehensive and weighted data set of drug-target associations. RESULTS: In this study, we created a weighted and integrated drug-target interactome (WinDTome) to provide a comprehensive resource of drug-target associations for computational pharmacology. We first collected drug-target interactions from six commonly used drug-target centered data sources including DrugBank, KEGG, TTD, MATADOR, PDSP K(i )Database, and BindingDB. Then, we employed the record linkage method to normalize drugs and targets to the unique identifiers by utilizing the public data sources including PubChem, Entrez Gene, and UniProt. To assess the reliability of the drug-target associations, we assigned two scores (Score_S and Score_R) to each drug-target association based on their data sources and publication references. Consequently, the WinDTome contains 546,196 drug-target associations among 303,018 compounds and 4,113 genes. To assess the application of the WinDTome, we designed a network-based approach for drug repurposing using mental disorder schizophrenia (SCZ) as a case. Starting from 41 known SCZ drugs and their targets, we inferred a total of 264 potential SCZ drugs through the associations of drug-target with Score_S higher than two in WinDTome and human protein-protein interactions. Among the 264 SCZ-related drugs, 39 drugs have been investigated in clinical trials for SCZ treatment and 74 drugs for the treatment of other mental disorders, respectively. Compared with the results using other Score_S cutoff values, single data source, or the data from STITCH, the inference of 264 SCZ-related drugs had the highest performance. CONCLUSIONS: The WinDTome generated in this study contains comprehensive drug-target associations with confidence scores. Its application to the SCZ drug repurposing demonstrated that the WinDTome is promising to serve as a useful resource for drug repurposing.