Cargando…
Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning
Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative...
Autores principales: | Heffernan, Rhys, Paliwal, Kuldip, Lyons, James, Dehzangi, Abdollah, Sharma, Alok, Wang, Jihua, Sattar, Abdul, Yang, Yuedong, Zhou, Yaoqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476419/ https://www.ncbi.nlm.nih.gov/pubmed/26098304 http://dx.doi.org/10.1038/srep11476 |
Ejemplares similares
-
Gram-positive and gram-negative subcellular localization using rotation forest and physicochemical-based features
por: Dehzangi, Abdollah, et al.
Publicado: (2015) -
Sixty-five years of the long march in protein secondary structure prediction: the final stretch?
por: Yang, Yuedong, et al.
Publicado: (2016) -
Proposing a highly accurate protein structural class predictor using segmentation-based features
por: Dehzangi, Abdollah, et al.
Publicado: (2014) -
Improving protein fold recognition using the amalgamation of evolutionary-based and structural based information
por: Paliwal, Kuldip K, et al.
Publicado: (2014) -
Enhancing protein backbone angle prediction by using simpler models of deep neural networks
por: Mataeimoghadam, Fereshteh, et al.
Publicado: (2020)