Cargando…
Trbp regulates heart function through miRNA-mediated Sox6 repression
Cardiomyopathy is associated with altered expression of genes encoding contractile proteins. Here we show that Trbp (Tarbp2), an RNA binding protein, is required for normal heart function. Cardiac-specific inactivation of Trbp (Trbp(cKO)) caused progressive cardiomyopathy and lethal heart failure. T...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4485565/ https://www.ncbi.nlm.nih.gov/pubmed/26029872 http://dx.doi.org/10.1038/ng.3324 |
Sumario: | Cardiomyopathy is associated with altered expression of genes encoding contractile proteins. Here we show that Trbp (Tarbp2), an RNA binding protein, is required for normal heart function. Cardiac-specific inactivation of Trbp (Trbp(cKO)) caused progressive cardiomyopathy and lethal heart failure. Trbp loss of function resulted in upregulation of Sox6, repression of genes encoding normal cardiac slow-twitch myofiber proteins, and pathologically increased expression of skeletal fast-twitch myofiber genes. Remarkably, knockdown of Sox6 fully rescued the Trbp mutant phenotype, whereas Sox6 overexpression phenocopied the Trbp(cKO) phenotype. Trbp inactivation was mechanistically linked to Sox6 upregulation through altered processing of miR-208a, which is a direct inhibitor of Sox6. Transgenic overexpression of miR-208a sufficiently repressed Sox6, restored the balance of fast- and slow- twitch myofiber gene expression, and rescued cardiac function in Trbp(cKO) mice. Together, our studies reveal a novel Trbp-mediated microRNA processing mechanism in regulating a linear genetic cascade essential for normal heart function. |
---|