Cargando…
Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection
BACKGROUND: An enduring challenge in personalized medicine is to select right drug for individual patients. Testing drugs on patients in large clinical trials is one way to assess their efficacy and toxicity, but it is impractical to test hundreds of drugs currently under development. Therefore the...
Autores principales: | Dong, Zuoli, Zhang, Naiqian, Li, Chun, Wang, Haiyun, Fang, Yun, Wang, Jun, Zheng, Xiaoqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4485860/ https://www.ncbi.nlm.nih.gov/pubmed/26121976 http://dx.doi.org/10.1186/s12885-015-1492-6 |
Ejemplares similares
-
Predicting Anticancer Drug Responses Using a Dual-Layer Integrated Cell Line-Drug Network Model
por: Zhang, Naiqian, et al.
Publicado: (2015) -
DISIS: Prediction of Drug Response through an Iterative Sure Independence Screening
por: Fang, Yun, et al.
Publicado: (2015) -
A Network Flow-Based Method to Predict Anticancer Drug Sensitivity
por: Qin, Yufang, et al.
Publicado: (2015) -
Recursive Feature Selection with Significant Variables of Support Vectors
por: Tsai, Chen-An, et al.
Publicado: (2012) -
Cross-Subject EEG Feature Selection for Emotion Recognition Using Transfer Recursive Feature Elimination
por: Yin, Zhong, et al.
Publicado: (2017)