Cargando…

FOXL2 modulates cartilage, skeletal development and IGF1-dependent growth in mice

BACKGROUND: Haploinsufficiency of the FOXL2 transcription factor in humans causes Blepharophimosis/Ptosis/Epicanthus Inversus syndrome (BPES), characterized by eyelid anomalies and premature ovarian failure. Mice lacking Foxl2 recapitulate human eyelid/forehead defects and undergo female gonadal dys...

Descripción completa

Detalles Bibliográficos
Autores principales: Marongiu, Mara, Marcia, Loredana, Pelosi, Emanuele, Lovicu, Mario, Deiana, Manila, Zhang, Yonqing, Puddu, Alessandro, Loi, Angela, Uda, Manuela, Forabosco, Antonino, Schlessinger, David, Crisponi, Laura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489133/
https://www.ncbi.nlm.nih.gov/pubmed/26134413
http://dx.doi.org/10.1186/s12861-015-0072-y
Descripción
Sumario:BACKGROUND: Haploinsufficiency of the FOXL2 transcription factor in humans causes Blepharophimosis/Ptosis/Epicanthus Inversus syndrome (BPES), characterized by eyelid anomalies and premature ovarian failure. Mice lacking Foxl2 recapitulate human eyelid/forehead defects and undergo female gonadal dysgenesis. We report here that mice lacking Foxl2 also show defects in postnatal growth and embryonic bone and cartilage formation. METHODS: Foxl2(−/−) male mice at different stages of development have been characterized and compared to wild type. Body length and weight were measured and growth curves were created. Skeletons were stained with alcian blue and/or alizarin red. Bone and cartilage formation was analyzed by Von Kossa staining and immunofluorescence using anti-FOXL2 and anti-SOX9 antibodies followed by confocal microscopy. Genes differentially expressed in skull vaults were evaluated by microarray analysis. Analysis of the GH/IGF1 pathway was done evaluating the expression of several hypothalamic-pituitary-bone axis markers by RT-qPCR. RESULTS: Compared to wild-type, Foxl2 null mice are smaller and show skeletal abnormalities and defects in cartilage and bone mineralization, with down-regulation of the GH/IGF1 axis. Consistent with these effects, we find FOXL2 expressed in embryos at 9.5 dpc in neural tube epithelium, in head mesenchyme near the neural tube, and within the first branchial arch; then, starting at 12.5 dpc, expressed in cartilaginous tissue; and at PO and P7, in hypothalamus. CONCLUSIONS: Our results support FOXL2 as a master transcription factor in a spectrum of developmental processes, including growth, cartilage and bone formation. Its action overlaps that of SOX9, though they are antagonistic in female vs male gonadal sex determination but conjoint in cartilage and skeletal development. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12861-015-0072-y) contains supplementary material, which is available to authorized users.