Cargando…

Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation

β-Sheet-rich α-synuclein (αS) aggregates characterize Parkinson's disease (PD). αS was long believed to be a natively unfolded monomer, but recent work suggests it also occurs in α-helix-rich tetramers. Crosslinking traps principally tetrameric αS in intact normal neurons, but not after cell ly...

Descripción completa

Detalles Bibliográficos
Autores principales: Dettmer, Ulf, Newman, Andrew J., Soldner, Frank, Luth, Eric S., Kim, Nora C., von Saucken, Victoria E., Sanderson, John B., Jaenisch, Rudolf, Bartels, Tim, Selkoe, Dennis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490410/
https://www.ncbi.nlm.nih.gov/pubmed/26076669
http://dx.doi.org/10.1038/ncomms8314
_version_ 1782379497524297728
author Dettmer, Ulf
Newman, Andrew J.
Soldner, Frank
Luth, Eric S.
Kim, Nora C.
von Saucken, Victoria E.
Sanderson, John B.
Jaenisch, Rudolf
Bartels, Tim
Selkoe, Dennis
author_facet Dettmer, Ulf
Newman, Andrew J.
Soldner, Frank
Luth, Eric S.
Kim, Nora C.
von Saucken, Victoria E.
Sanderson, John B.
Jaenisch, Rudolf
Bartels, Tim
Selkoe, Dennis
author_sort Dettmer, Ulf
collection PubMed
description β-Sheet-rich α-synuclein (αS) aggregates characterize Parkinson's disease (PD). αS was long believed to be a natively unfolded monomer, but recent work suggests it also occurs in α-helix-rich tetramers. Crosslinking traps principally tetrameric αS in intact normal neurons, but not after cell lysis, suggesting a dynamic equilibrium. Here we show that freshly biopsied normal human brain contains abundant αS tetramers. The PD-causing mutation A53T decreases tetramers in mouse brain. Neurons derived from an A53T patient have decreased tetramers. Neurons expressing E46K do also, and adding 1-2 E46K-like mutations into the canonical αS repeat motifs (KTKEGV) further reduces tetramers, decreases αS solubility and induces neurotoxicity and round inclusions. The other three fPD missense mutations likewise decrease tetramer:monomer ratios. The destabilization of physiological tetramers by PD-causing missense mutations and the neurotoxicity and inclusions induced by markedly decreasing tetramers suggest that decreased α-helical tetramers and increased unfolded monomers initiate pathogenesis. Tetramer-stabilizing compounds should prevent this.
format Online
Article
Text
id pubmed-4490410
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-44904102015-07-13 Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation Dettmer, Ulf Newman, Andrew J. Soldner, Frank Luth, Eric S. Kim, Nora C. von Saucken, Victoria E. Sanderson, John B. Jaenisch, Rudolf Bartels, Tim Selkoe, Dennis Nat Commun Article β-Sheet-rich α-synuclein (αS) aggregates characterize Parkinson's disease (PD). αS was long believed to be a natively unfolded monomer, but recent work suggests it also occurs in α-helix-rich tetramers. Crosslinking traps principally tetrameric αS in intact normal neurons, but not after cell lysis, suggesting a dynamic equilibrium. Here we show that freshly biopsied normal human brain contains abundant αS tetramers. The PD-causing mutation A53T decreases tetramers in mouse brain. Neurons derived from an A53T patient have decreased tetramers. Neurons expressing E46K do also, and adding 1-2 E46K-like mutations into the canonical αS repeat motifs (KTKEGV) further reduces tetramers, decreases αS solubility and induces neurotoxicity and round inclusions. The other three fPD missense mutations likewise decrease tetramer:monomer ratios. The destabilization of physiological tetramers by PD-causing missense mutations and the neurotoxicity and inclusions induced by markedly decreasing tetramers suggest that decreased α-helical tetramers and increased unfolded monomers initiate pathogenesis. Tetramer-stabilizing compounds should prevent this. Nature Pub. Group 2015-06-16 /pmc/articles/PMC4490410/ /pubmed/26076669 http://dx.doi.org/10.1038/ncomms8314 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Dettmer, Ulf
Newman, Andrew J.
Soldner, Frank
Luth, Eric S.
Kim, Nora C.
von Saucken, Victoria E.
Sanderson, John B.
Jaenisch, Rudolf
Bartels, Tim
Selkoe, Dennis
Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation
title Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation
title_full Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation
title_fullStr Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation
title_full_unstemmed Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation
title_short Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation
title_sort parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490410/
https://www.ncbi.nlm.nih.gov/pubmed/26076669
http://dx.doi.org/10.1038/ncomms8314
work_keys_str_mv AT dettmerulf parkinsoncausingasynucleinmissensemutationsshiftnativetetramerstomonomersasamechanismfordiseaseinitiation
AT newmanandrewj parkinsoncausingasynucleinmissensemutationsshiftnativetetramerstomonomersasamechanismfordiseaseinitiation
AT soldnerfrank parkinsoncausingasynucleinmissensemutationsshiftnativetetramerstomonomersasamechanismfordiseaseinitiation
AT lutherics parkinsoncausingasynucleinmissensemutationsshiftnativetetramerstomonomersasamechanismfordiseaseinitiation
AT kimnorac parkinsoncausingasynucleinmissensemutationsshiftnativetetramerstomonomersasamechanismfordiseaseinitiation
AT vonsauckenvictoriae parkinsoncausingasynucleinmissensemutationsshiftnativetetramerstomonomersasamechanismfordiseaseinitiation
AT sandersonjohnb parkinsoncausingasynucleinmissensemutationsshiftnativetetramerstomonomersasamechanismfordiseaseinitiation
AT jaenischrudolf parkinsoncausingasynucleinmissensemutationsshiftnativetetramerstomonomersasamechanismfordiseaseinitiation
AT bartelstim parkinsoncausingasynucleinmissensemutationsshiftnativetetramerstomonomersasamechanismfordiseaseinitiation
AT selkoedennis parkinsoncausingasynucleinmissensemutationsshiftnativetetramerstomonomersasamechanismfordiseaseinitiation