Cargando…
Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method
A new methodology termed Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) was developed to predict the changes of the binding free energy caused by mutations. The method utilizes 3D structures of the corresponding protein-protein complexes and takes advantage of both approache...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492929/ https://www.ncbi.nlm.nih.gov/pubmed/26146996 http://dx.doi.org/10.1371/journal.pcbi.1004276 |
_version_ | 1782379827393724416 |
---|---|
author | Petukh, Marharyta Li, Minghui Alexov, Emil |
author_facet | Petukh, Marharyta Li, Minghui Alexov, Emil |
author_sort | Petukh, Marharyta |
collection | PubMed |
description | A new methodology termed Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) was developed to predict the changes of the binding free energy caused by mutations. The method utilizes 3D structures of the corresponding protein-protein complexes and takes advantage of both approaches: sequence- and structure-based methods. The method has two components: a MM/PBSA-based component, and an additional set of statistical terms delivered from statistical investigation of physico-chemical properties of protein complexes. While the approach is rigid body approach and does not explicitly consider plausible conformational changes caused by the binding, the effect of conformational changes, including changes away from binding interface, on electrostatics are mimicked with amino acid specific dielectric constants. This provides significant improvement of SAAMBE predictions as indicated by better match against experimentally determined binding free energy changes over 1300 mutations in 43 proteins. The final benchmarking resulted in a very good agreement with experimental data (correlation coefficient 0.624) while the algorithm being fast enough to allow for large-scale calculations (the average time is less than a minute per mutation). |
format | Online Article Text |
id | pubmed-4492929 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44929292015-07-15 Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method Petukh, Marharyta Li, Minghui Alexov, Emil PLoS Comput Biol Research Article A new methodology termed Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) was developed to predict the changes of the binding free energy caused by mutations. The method utilizes 3D structures of the corresponding protein-protein complexes and takes advantage of both approaches: sequence- and structure-based methods. The method has two components: a MM/PBSA-based component, and an additional set of statistical terms delivered from statistical investigation of physico-chemical properties of protein complexes. While the approach is rigid body approach and does not explicitly consider plausible conformational changes caused by the binding, the effect of conformational changes, including changes away from binding interface, on electrostatics are mimicked with amino acid specific dielectric constants. This provides significant improvement of SAAMBE predictions as indicated by better match against experimentally determined binding free energy changes over 1300 mutations in 43 proteins. The final benchmarking resulted in a very good agreement with experimental data (correlation coefficient 0.624) while the algorithm being fast enough to allow for large-scale calculations (the average time is less than a minute per mutation). Public Library of Science 2015-07-06 /pmc/articles/PMC4492929/ /pubmed/26146996 http://dx.doi.org/10.1371/journal.pcbi.1004276 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Petukh, Marharyta Li, Minghui Alexov, Emil Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method |
title | Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method |
title_full | Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method |
title_fullStr | Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method |
title_full_unstemmed | Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method |
title_short | Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method |
title_sort | predicting binding free energy change caused by point mutations with knowledge-modified mm/pbsa method |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492929/ https://www.ncbi.nlm.nih.gov/pubmed/26146996 http://dx.doi.org/10.1371/journal.pcbi.1004276 |
work_keys_str_mv | AT petukhmarharyta predictingbindingfreeenergychangecausedbypointmutationswithknowledgemodifiedmmpbsamethod AT liminghui predictingbindingfreeenergychangecausedbypointmutationswithknowledgemodifiedmmpbsamethod AT alexovemil predictingbindingfreeenergychangecausedbypointmutationswithknowledgemodifiedmmpbsamethod |