Cargando…

Tunnel junction based memristors as artificial synapses

We prepared magnesia, tantalum oxide, and barium titanate based tunnel junction structures and investigated their memristive properties. The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use. Here, we increased the amplitude of the resistance ch...

Descripción completa

Detalles Bibliográficos
Autores principales: Thomas, Andy, Niehörster, Stefan, Fabretti, Savio, Shepheard, Norman, Kuschel, Olga, Küpper, Karsten, Wollschläger, Joachim, Krzysteczko, Patryk, Chicca, Elisabetta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493388/
https://www.ncbi.nlm.nih.gov/pubmed/26217173
http://dx.doi.org/10.3389/fnins.2015.00241
Descripción
Sumario:We prepared magnesia, tantalum oxide, and barium titanate based tunnel junction structures and investigated their memristive properties. The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use. Here, we increased the amplitude of the resistance change from 10% up to 100%. Utilizing the memristive properties, we looked into the use of the junction structures as artificial synapses. We observed analogs of long-term potentiation, long-term depression and spike-time dependent plasticity in these simple two terminal devices. Finally, we suggest a possible pathway of these devices toward their integration in neuromorphic systems for storing analog synaptic weights and supporting the implementation of biologically plausible learning mechanisms.