Cargando…

Abundance of BER-related proteins depends on cell proliferation status and the presence of DNA polymerase β

In mammalian cells, murine N-methylpurine DNA glycosylase (MPG) removes bases damaged spontaneously or by chemical agents through the process called base excision repair (BER). In this study, we investigated the influence of POL β deficiency on MPG-initiated BER efficiency and the expression levels...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamamoto, Mizuki, Yamamoto, Ryohei, Takenaka, Shigeo, Matsuyama, Satoshi, Kubo, Kihei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497385/
https://www.ncbi.nlm.nih.gov/pubmed/25829532
http://dx.doi.org/10.1093/jrr/rrv010
Descripción
Sumario:In mammalian cells, murine N-methylpurine DNA glycosylase (MPG) removes bases damaged spontaneously or by chemical agents through the process called base excision repair (BER). In this study, we investigated the influence of POL β deficiency on MPG-initiated BER efficiency and the expression levels of BER-related proteins in log-phase and growth-arrested (G(0)) mouse embryonic fibroblasts (MEFs). G(0) wild-type (WT) or POL β–deficient (Pol β–KO) cells showed greater resistance to methyl methanesulfonate than did log-phase cells, and repair of methylated bases was less efficient in the G(0) cells. Apex1 mRNA expression was significantly lower in Pol β–KO or G(0) WT MEFs than in log-phase WT MEFs. Moreover, although Mpg mRNA levels did not differ significantly among cell types, MPG protein levels were significantly higher in log-phase WT cells than in log-phase Pol β–KO cells or either type of G(0) cells. Additionally, proliferating cell nuclear antigen protein levels were also reduced in log-phase Pol β–KO cells or either type of G(0) cells. These results indicated that MPG-initiated BER functions mainly in proliferating cells, but less so in G(0) cells, and that POL β may be involved in regulation of the amount of intracellular repair proteins.