Cargando…

Cis-Acting Sequence Elements and Upstream Open Reading Frame in Mouse Utrophin-A 5'-UTR Repress Cap-Dependent Translation

Utrophin, the autosomal homologue of dystrophin can functionally compensate for dystrophin deficiency. Utrophin upregulation could therefore be a therapeutic strategy in Duchenne Muscular Dystrophy (DMD) that arises from mutation in dystrophin gene. In contrast to its transcriptional regulation, mec...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghosh, Trinath, Basu, Utpal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521823/
https://www.ncbi.nlm.nih.gov/pubmed/26230628
http://dx.doi.org/10.1371/journal.pone.0134809
Descripción
Sumario:Utrophin, the autosomal homologue of dystrophin can functionally compensate for dystrophin deficiency. Utrophin upregulation could therefore be a therapeutic strategy in Duchenne Muscular Dystrophy (DMD) that arises from mutation in dystrophin gene. In contrast to its transcriptional regulation, mechanisms operating at post-transcriptional level of utrophin expression have not been well documented. Although utrophin-A 5'-UTR has been reported with internal ribosome entry site (IRES), its inhibitory effect on translation is also evident. In the present study we therefore aimed to compare relative contribution of cap-independent and cap-dependent translation with mouse utrophin-A 5'-UTR through m7G-capped and A-capped mRNA transfection based reporter assay. Our results demonstrate that cap-independent translation with utrophin-A 5'-UTR is not as strong as viral IRES. However, cap-independent mode has significant contribution as cap-dependent translation is severely repressed with utrophin-A 5'-UTR. We further identified two sequence elements and one upstream open reading frame in utrophin-A 5'-UTR responsible for repression. The repressor elements in utrophin-A 5'-UTR may be targeted for utrophin upregulation.