Cargando…

Effect of preheating of low shrinking resin composite on intrapulpal temperature and microtensile bond strength to dentin

The effect of preheating of the silorane-based resin composite on intrapulpal temperature (IPT) and dentin microtensile bond strength (μTBS) was evaluated. For the IPT, teeth (n = 15) were sectioned to obtain discs of 0.5 mm thickness (2 discs/tooth). The discs were divided into three groups (n = 10...

Descripción completa

Detalles Bibliográficos
Autores principales: El-Deeb, Heba A., Abd El-Aziz, Sara, Mobarak, Enas H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4522590/
https://www.ncbi.nlm.nih.gov/pubmed/26257945
http://dx.doi.org/10.1016/j.jare.2014.11.013
Descripción
Sumario:The effect of preheating of the silorane-based resin composite on intrapulpal temperature (IPT) and dentin microtensile bond strength (μTBS) was evaluated. For the IPT, teeth (n = 15) were sectioned to obtain discs of 0.5 mm thickness (2 discs/tooth). The discs were divided into three groups (n = 10/group) according to the temperature of the Filtek LS™ silorane-based resin composite during its placement, either at room temperature (23 ± 1 °C) or preheated to 54 °C or 68 °C using a commercial Calset™ device. Discs were subjected to a simulated intrapulpal pressure (IPP) and placed inside a specially constructed incubator adjusted at 37 °C. IPT was measured before, during and after placement and curing of the resin composite using K-type thermocouple. For μTBS testing, flat occlusal middentin surfaces (n = 24) were obtained. P90 System Adhesive was applied according to manufacturer’s instructions then Filtek LS was placed at the tested temperatures (n = 6). Restorative procedures were done while the specimens were connected to IPP simulation. IPP was maintained and the specimens were immersed in artificial saliva at 37 °C for 24 h before testing. Each specimen was sectioned into sticks (0.9 ± 0.01 mm(2)). The sticks (24/group) were subjected to μTBS test and their modes of failure were determined using scanning electron microscope (SEM). For both preheated groups, IPT increased equally by 1.5–2 °C upon application of the composite. After light curing, IPT increased by 4–5 °C in all tested groups. Nevertheless, the IPT of the preheated groups required a longer time to return to the baseline temperature. One-way ANOVA revealed no significant difference between the μTBS values of all groups. SEM revealed predominately mixed mode of failure. Preheating of silorane-based resin composite increased the IPT but not to the critical level and had no effect on dentin μTBS.